Part Number Hot Search : 
TSM69 2KBP08M EL6248CU LIS33 52AMI11L B80NF5 DC6VC C78L05CD
Product Description
Full Text Search
 

To Download W632GG6KB-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  w632gg6kb 16 m ? ? publication release date: dec. 08, 2014 revision: a04 - 1 - table of contents - 1. general description ................................ ................................ ................................ ................... 5 2. features ................................ ................................ ................................ ................................ ........... 5 3. order informati on ................................ ................................ ................................ ....................... 6 4. key parameters ................................ ................................ ................................ ............................. 7 5. ball configuration ................................ ................................ ................................ ...................... 8 6. ball description ................................ ................................ ................................ ............................ 9 7. block diagram ................................ ................................ ................................ .............................. 11 8. functional description ................................ ................................ ................................ ............ 12 8. 1 basic functionality ................................ ................................ ................................ .............................. 12 8.2 reset and initialization procedure ................................ ................................ ................................ .... 12 8.2.1 power - up initialization sequence ................................ ................................ ..................... 12 8.2.2 reset initialization with stable power ................................ ................................ .............. 14 8.3 programming the mode registers ................................ ................................ ................................ ....... 15 8.3.1 mode register mr0 ................................ ................................ ................................ ......... 17 8.3.1.1 burst length, type and order ................................ ................................ ................ 18 8.3.1.2 cas latency ................................ ................................ ................................ ........... 18 8.3.1.3 test mode ................................ ................................ ................................ ............... 19 8.3.1.4 dll reset ................................ ................................ ................................ ............... 19 8.3.1.5 write recovery ................................ ................................ ................................ ....... 19 8.3.1. 6 precharge pd dll ................................ ................................ ................................ . 19 8.3.2 mode register mr1 ................................ ................................ ................................ ......... 20 8.3.2.1 dll enable/disable ................................ ................................ ................................ 20 8. 3.2.2 output driver impedance control ................................ ................................ ........... 21 8.3.2.3 odt r tt values ................................ ................................ ................................ .... 21 8.3.2. 4 additive latency (al) ................................ ................................ ............................. 21 8.3.2.5 write levelin g ................................ ................................ ................................ .......... 21 8.3.2.6 output disable ................................ ................................ ................................ ........ 21 8.3.3 mode register mr2 ................................ ................................ ................................ ......... 22 8.3.3.1 partial array self refresh (pasr) ................................ ................................ .......... 23 8.3.3.2 cas write latency (cwl) ................................ ................................ ...................... 23 8.3.3.3 auto self refresh (asr) and self refresh temperature (srt) ............................. 23 8.3.3.4 dynamic odt (rtt_wr) ................................ ................................ ......................... 23 8.3.4 mode register mr3 ................................ ................................ ................................ ......... 24 8.3.4.1 multi purpose register (mpr) ................................ ................................ ................ 24 8.4 no operation (nop) command ................................ ................................ ................................ .......... 2 5 8.5 deselect command ................................ ................................ ................................ ............................. 25 8.6 dll - off mode ................................ ................................ ................................ ................................ ...... 25 8.7 dll on/off switching procedure ................................ ................................ ................................ ........... 26 8.7.1 dll on to dll off procedure ................................ ................................ .......... 26 8.7.2 dll off to dll on procedure ................................ ................................ .......... 27 8.8 input clock frequency change ................................ ................................ ................................ .............. 28 8.8.1 frequency change during self - refresh ................................ ................................ ............ 28 8.8.2 frequency change during precharge power - down ................................ .......................... 28 8.9 write leveling ................................ ................................ ................................ ................................ ..... 30
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 2 - 8.9.1 dram setting for write leveling & dram termination function in that mode .................... 31 8.9.2 write leveling procedure ................................ ................................ ................................ . 31 8.9.3 write leveling mode exit ................................ ................................ ................................ . 33 8.10 multi purpose register ................................ ................................ ................................ ........................ 34 8.10.1 mpr functional description ................................ ................................ ............................. 35 8.10.2 mpr register address definition ................................ ................................ ..................... 36 8.10.3 relevant timing parameters ................................ ................................ ............................ 36 8.10.4 protocol example ................................ ................................ ................................ ............. 36 8.11 active command ................................ ................................ ................................ .............................. 42 8.12 precharge command ................................ ................................ ................................ .................... 42 8.13 read operation ................................ ................................ ................................ ................................ . 43 8.13.1 read burst operation ................................ ................................ ................................ ..... 43 8.13.2 read timing definitions ................................ ................................ ................................ .. 44 8.13.2.1 read timing; clock to data strobe relationshi p ................................ .................... 45 8.13.2.2 read timing; data strobe to data relationship ................................ ..................... 46 8.13.2.3 tlz(dqs), tlz(dq), thz(dqs), thz(dq) calculation ................................ ............. 47 8.13.2.4 trpre calculation ................................ ................................ ................................ .. 48 8.13.2.5 trp st calculation ................................ ................................ ................................ .. 48 8.13.2.6 burst read operation followed by a precharge ................................ ...................... 54 8.14 write operation ................................ ................................ ................................ ................................ 56 8.14.1 ddr3 burst operation ................................ ................................ ................................ ..... 56 8.14.2 write timing violations ................................ ................................ ................................ . 56 8.14.2.1 motivation ................................ ................................ ................................ ............... 56 8.14.2.2 data setup and hold violations ................................ ................................ .............. 56 8.14.2.3 strobe to strobe and strobe to clock violations ................................ ..................... 56 8.14.2.4 write timing parameters ................................ ................................ ........................ 56 8.14.3 write data mask ................................ ................................ ................................ ............... 57 8.14.4 twpre calculation ................................ ................................ ................................ ........... 58 8.14 .5 twpst calculation ................................ ................................ ................................ ........... 58 8.15 refresh command ................................ ................................ ................................ .............................. 65 8.16 self - refresh operation ................................ ................................ ................................ ....................... 67 8.17 power - down modes ................................ ................................ ................................ ............................ 69 8.17.1 power - down entry and exit ................................ ................................ ............................. 69 8.17.2 power - down clarifications - case 1 ................................ ................................ ................. 75 8.17.3 power - down clarifications - case 2 ................................ ................................ ................. 75 8.17.4 power - down clarifications - case 3 ................................ ................................ ................. 76 8.18 zq calibration commands ................................ ................................ ................................ .................. 77 8.18.1 zq calibration description ................................ ................................ ............................... 77 8.18.2 zq calibration timing ................................ ................................ ................................ ...... 78 8.18.3 zq external resistor value, tolerance, and capacitive loading ................................ ...... 78 8.19 on - die termination (odt) ................................ ................................ ................................ .................. 79 8.19.1 odt mode register and odt truth table ................................ ................................ ...... 79 8.19.2 synchronous odt mode ................................ ................................ ................................ .. 80 8.19.2.1 odt latency and posted odt ................................ ................................ ............... 80 8.19.2.2 timing parameters ................................ ................................ ................................ . 80 8. 19.2.3 odt during reads ................................ ................................ ................................ .. 82 8.19.3 dynamic odt ................................ ................................ ................................ .................. 83 8.19.3.1 functional description: ................................ ................................ ........................... 83 8.19.3.2 odt timing diagrams ................................ ................................ ............................ 84
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 3 - 8.19.4 asynchronous odt mode ................................ ................................ ................................ 88 8.19.4.1 synchronous to asynchronous odt mode transitions ................................ .......... 89 8.19.4.2 synchronous to asynchronous odt mode transition during power - down entry .. 89 8.19.4.3 asynchronous to synchronous odt mode transition during power - down exit ..... 92 8.19.4.4 asynchronous to synchronous odt mode during short cke high and short cke low periods 93 9. operation mode ................................ ................................ ................................ ........................... 94 9.1 command truth table ................................ ................................ ................................ ........................ 94 9.2 cke truth table ................................ ................................ ................................ ................................ . 96 9.3 simplified state diagram ................................ ................................ ................................ ..................... 97 10. electrical characteristics ................................ ................................ ................................ ... 98 10.1 absolute maximum ratings ................................ ................................ ................................ ................ 98 10.2 operating temperature condition ................................ ................................ ................................ ....... 98 10.3 dc & ac operating conditions ................................ ................................ ................................ ........... 98 10.3.1 recommended dc operating conditions ................................ ................................ ........ 98 10.4 input and output leakage currents ................................ ................................ ................................ .... 99 10.5 interface test conditions ................................ ................................ ................................ .................... 99 10.6 dc and ac input measurement levels ................................ ................................ ............................. 100 10.6.1 dc and ac input levels for single - ended command and address signals .................. 100 10.6.2 dc and ac input levels for single - ended data signals ................................ ................ 101 10.6.3 differential swing requirements for clock (ck - ck#) and strobe (dqs - dqs#) ........... 103 10.6.4 single - ended requirements for differential signals ................................ ......................... 104 10.6.5 differential input cross point voltage ................................ ................................ ............ 105 10.6.6 slew rate definitions for single - ended input signals ................................ .................... 106 10.6.7 slew rate definitions for differential input signals ................................ ........................ 106 10.7 dc and ac output measurement levels ................................ ................................ .......................... 107 10.7.1 output slew rate definition and requirements ................................ ............................. 107 10.7.1.1 single ended output slew rate ................................ ................................ ........... 108 10.7.1.2 differential output slew rate ................................ ................................ ............... 109 10.8 34 ohm output driver dc electrical characteristics ................................ ................................ .......... 110 10.8.1 output driver temperature and voltage sensitivity ................................ ........................ 112 10.9 on - die termination (odt) levels and characteristics ................................ ................................ ..... 113 10.9.1 odt levels and i - v characterist ics ................................ ................................ ............... 113 10.9.2 odt dc electrical characteristics ................................ ................................ ................. 114 10.9.3 odt temperature and voltage sensitivity ................................ ................................ ..... 114 10.9.4 design guide lines for rtt pu and rtt pd ................................ ................................ ....... 115 10.10 odt timing definitions ................................ ................................ ................................ ............ 116 10.10.1 test load for odt timings ................................ ................................ ............................ 116 10.10.2 odt timing definitions ................................ ................................ ................................ .. 116 10.11 input/output capacitance ................................ ................................ ................................ ........ 120 10.12 overshoot and undershoot specifications ................................ ................................ ............... 121 10.12.1 ac overshoot /undershoot specification for address and control pins: ....................... 121 10.12.2 ac overshoot /undershoot specification for clock, data, strobe and mask pins: ......... 121 10.13 idd and iddq specification parameters and test conditions ................................ ................ 122 10.13.1 idd and iddq measurement conditions ................................ ................................ ....... 122 10.13.2 idd current specifications ................................ ................................ ............................. 132 10.14 clock specification ................................ ................................ ................................ .................. 133 10.15 speed bins ................................ ................................ ................................ .............................. 134 10.15.1 ddr3 - 1333 speed bin and operating conditions ................................ ......................... 134 10.15.2 ddr3 - 1600 speed bin and operating conditions ................................ ......................... 135
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 4 - 10.15.3 ddr3 - 1866 speed bin and operating conditions ................................ ......................... 136 10.15.4 speed bin general notes ................................ ................................ .............................. 137 10.16 ac characteristics ................................ ................................ ................................ ................... 13 8 10.16.1 ac timing and operating condition for - 11 speed grade ................................ .............. 138 10.16.2 ac timing and operating condition for - 12/12i/ - 15/15i speed grades ........................... 142 10.16.3 timing parameter notes ................................ ................................ ................................ 146 10.16.4 address / command setup, hold and derating ................................ ............................. 149 10.16.5 data setup, hold and slew rate derating ................................ ................................ ..... 156 11. package specification ................................ ................................ ................................ ............ 158 12. revision history ................................ ................................ ................................ ........................ 159
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 5 - 1. general description the w632gg6kb is a 2 g b its ddr 3 s dram , organized as 16,777,216 words ? 8 banks ? 16 bits. this device achieves high speed transfer rates up to 1 866 mb/sec/pin (ddr 3 - 1 866 ) for various applications. the w632gg6kb is sorted into the following speed grades: - 1 1 , - 1 2 , 12i, - 15 and 15i . the - 1 1 speed grade is compliant to the ddr 3 - 1 866 ( 13 - 13 - 13 ) specification . the - 12 and 12i speed grade s are compliant to the ddr 3 - 1600 ( 11 - 11 - 11 ) specification ( the 12 i industrial grade which is guaranteed to support - 4 0 c t case 9 5 c ) . t he - 15 and 15i speed grade s are compliant to the ddr 3 - 1333 (9 - 9 - 9) specification ( the 15 i industrial grade which is guaranteed to support - 4 0 c t case 9 5 c ) . the w632gg6kb is designed to comply with the following key ddr3 sdram features such as posted cas# , p rogrammable cas# write latency (cwl), zq calibration, o n d ie t ermination and a synchronous r eset. all of the control and address inputs are synchronized with a pair of externally supplied differential clocks. inputs are latched at the cross point of diffe rential clocks ( ck rising and ck# falling). all i/os are synchronized with a differential dqs - dqs# pair in a source synchronous fashion. 2. features ? power supply: v dd , v ddq = 1. 5 v 0. 075 v ? double data rate architecture: two data transfers per clock cycle ? eight internal banks for concurrent operation ? 8 bit prefetch architecture ? cas latency: 6 , 7 , 8, 9 , 10, 11 and 1 3 ? burst length 8 (bl8) and burst chop 4 (bc4) modes: fixed via mode register (mrs) or selectable on - the - fly (otf) ? programmable read burst ordering: interleaved or nibble sequential ? bi - directional, differential data strobes (dqs and dqs# ) are transmitted / received with data ? edge - aligned with r ead data and center - aligned with w rite data ? dll aligns dq and dqs transitions with clock ? differential clock inputs ( ck and ck# ) ? commands entered on each positive ck edge , d ata and data mask are referenced to both edges of a differential data strobe pair (double data rate) ? posted cas with programmable additive latency (al = 0, cl - 1 and cl - 2 ) for improved command, address and data bus efficiency ? read latency = additive latency plus cas latency (rl = al + cl) ? auto - precharge operation for read and write bursts ? refresh, self - refresh , auto self - refresh (asr) and partial array self refresh (pasr) ? precharged power down and active power down ? data masks (dm) for write data ? programmable cas write latency (cwl) per operating frequency ? write latency wl = al + cwl ? multi purpose register (mpr) for readout a predefined system timing calibration bit sequence
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 6 - ? system level timing calibration support via write leveling and mpr read pattern ? zq calibration for output driver and odt using external reference resistor to ground ? asynchronous reset # pin for power - up i nitialization s equence and reset function ? programmable on - die termination (odt) for data, data mask and differential strobe pairs ? dynamic odt mode for improved signal integrity and preselectable termination impedances during writes ? 2 k byte page size ? interface: sstl_1 5 ? packaged in w bga 96 ball ( 9 x 1 3 mm 2 ) , using l ead free materials with rohs compliant 3. order information part number speed grade operating temperatur e w632gg6kb - 1 1 ddr 3 - 1 866 ( 13 - 13 - 13 ) 0c t case 9 5c w632gg6kb - 1 2 ddr 3 - 1 600 ( 11 - 11 - 11 ) 0c t case 9 5c w632gg6kb 12i ddr 3 - 1 600 ( 11 - 11 - 11 ) - 4 0c t case 9 5c w632gg6kb - 1 5 ddr 3 - 1333 ( 9 - 9 - 9 ) 0c t case 9 5c w632gg6kb 1 5 i ddr 3 - 1333 ( 9 - 9 - 9 ) - 4 0c t case 9 5c
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 7 - 4. key parameters speed bin ddr3 - 1 866 ddr3 - 1 600 ddr3 - 1 333 unit cl - nrcd - nrp 13 - 13 - 13 11 - 11 - 11 9 - 9 - 9 part number exten s ion - 11 - 12/12i - 15/15i parameter sym . m in . m ax . m in . m ax . m in . m ax . maximum operating frequency using maximum allowed settings for sup_cl and sup_cwl f ckmax ? 933 ? 800 ? 667 mhz internal read command to first data t aa 13.91 20 13. 7 5 (13.125) * 5 20 13.5 (13.125) * 5 20 ns act to internal read or write delay time t rcd 13.91 ? 13. 7 5 (13.125) * 5 ? 13.5 (13.125) * 5 ? ns pre command period t rp 13.91 ? 13. 7 5 (13.125) * 5 ? 13.5 (13.125) * 5 ? ns act to act or ref command period t rc 47.91 ? 48 . 7 5 ( 48 .125) * 5 ? 49 .5 ( 49 .125) * 5 ? ns act to pre command period t ras 34 9 * t refi 35 9 * t refi 36 9 * t refi ns cl = 6 cwl = 5 t ck(avg) 2.5 3.3 2.5 3.3 2.5 3.3 ns cl = 7 cwl = 6 t ck(avg) reserved 1.875 < 2.5 1.875 < 2.5 ns cl = 8 cwl = 6 t ck(avg) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 ns cl = 9 cwl = 7 t ck(avg) reserved 1.5 < 1.875 1.5 < 1.875 ns cl = 10 cwl = 7 t ck(avg) 1.5 < 1.875 1.5 < 1.875 1.5 < .875 ns cl = 11 cwl = 8 t ck(avg) reserved 1.25 < 1.5 reserved ns cl = 13 cwl = 9 t ck(avg) 1.07 < 1.25 reserved reserved ns supported cl settings sup_cl 6, 8, 10, 13 6, ( 7 ) , 8, ( 9 ) , 10, 11 6, (7) , 8, 9, 10 nck supported c w l settings sup_cwl 5, 6, 7, 9 5, 6, 7, 8 5, 6, 7 nck average periodic refresh interval - 4 0c t cas e 85c t refi ? ? * 2 ? 7.8 * 2, 3 ? 7.8 * 2, 3 s 0c t cas e 85c ? 7.8 * 1 ? 7.8 * 1 ? 7.8 * 1 s 85 c < t cas e 9 5c ? 3 . 9 * 4 ? 3 . 9 * 4 ? 3 . 9 * 4 s operating one bank active - precharge current i dd0 ? 115 ? 105 ? 100 ma operating one bank active - read - precharge current i dd 1 ? 140 ? 130 ? 125 ma operating burst read current i dd4r ? 280 ? 250 ? 235 ma operating burst write current i dd4w ? 250 ? 220 ? 200 ma burst refresh current i dd5b ? 155 ? 150 ? 145 ma self - refresh current, t oper = 0 ~ 85c i dd6 ? 19 ? 19 ? 19 ma operating bank interleave current i dd7 ? 400 ? 380 ? 370 ma n ote s : ( field value contents in blue font or parentheses are optional ac parameter and cl setting ) 1. all speed grades s upport 0 c t cas e 85 c with full jedec ac and dc specifications . 2. for - 1 1 , - 12 and - 15 speed grade s , - 4 0 c t cas e < 0 c is not available . 3. 12i and 15i speed grade s s upport - 4 0 c t cas e 8 5 c with full jedec ac and dc specifications . 4. for all speed grade parts, t cas e is able to extend to 95c with doubling auto refresh commands in frequency to a 32 ms period ( t refi = 3.9 s) , it is mandatory to either use the manual self - refresh mode with extended temperature range capability (mr2 a6 = 0 b and mr2 a7 = 1 b ) or enable the auto self - refresh mode (asr) (mr2 a6 = 1 b , mr2 a7 is don't care ) . 5. for devices supporting optional down binning to cl=7 and cl=9, t aa /t rcd /t rp min must be 13.125 ns or lower. spd settings must be programmed to match. for example, ddr3 - 1333 (9 - 9 - 9) devices supporting down binning to ddr3 - 1066 (7 - 7 - 7) should program 13.125 ns in spd by tes for t aa min (byte 16), t rcd min (byte 18), and t rp min (byte 20). ddr3 - 1600 (11 - 11 - 11) devices supporting down binning to ddr3 - 1333 (9 - 9 - 9) or ddr3 - 1066 (7 - 7 - 7) should program 13.125 ns in spd bytes for t aa min (byte16), t rcd min (byte 18), and t rp min (byte 20). once t rp (byte 20) is programmed to 13.125 ns, t rc min (byte 21, 23) also should be programmed accodingly. for example, 49.125n s (t ras min + t rp min = 36 n s + 13.125 n s ) for ddr3 - 1333 (9 - 9 - 9) and 48.125 ns (t ras min + t rp min = 35 ns + 13.125 ns) for ddr3 - 1600 (11 - 11 - 11) .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 8 - 5. ball configuration 1 2 3 4 5 6 7 8 9 a b c d e f g h j k l d q u 4 m n d q s u # d q s u d q u 0 d m l d q l 1 v d d d q l 7 c k c k # a 1 0 / a p n c a 1 2 / b c # b a 1 v r e f c a z q v d d v s s d q l 5 v s s d q l 3 v s s q v s s q d q u 2 d q u 6 v d d q v s s v s s q v d d q v d d v d d q v s s q v s s q v d d q n c c k e n c v s s v d d d q u 7 v s s d q u 1 d m u d q l 0 d q s l d q s l # d q l 4 r a s # c a s # w e # b a 2 a 0 a 3 b a 0 c s # v d d v s s v d d q d q l 6 d q l 2 v s s q v d d q d q u 3 v d d d q u 5 v d d q v s s q v d d q v s s q v s s v d d q v s s q v r e f d q n c o d t n c v s s v d d p r t a 1 a 1 1 n c a 8 a 6 a 4 v s s v d d v s s v s s v d d v s s r e s e t # a 7 a 5 a 2 a 9 a 1 3
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 9 - 6. ball description ball number symbol type description j7, k7 ck, ck# input clock: ck and ck# are differential clock inputs. all addres s and control input signals are sampled on the crossing of the positive edge of ck and negative edge of ck# . k 9 cke input clock enable: cke high activates, and cke low deactiva tes, internal clock signals and device input buffers and output drivers. taking cke low provides precharge powe r down and self - refresh operation (all banks idle), or active power down (row active in any bank). cke is asynchronous for self - refresh exit. after v refca and v refdq have become stable during the power on and initialization sequence, they must be maintaine d during all operations (including self - refresh). cke must be maintained high throughout read and write accesses. input buffers, excluding ck, ck# , odt and cke, are di sabled during power down. input buffers, excluding cke, are disabled during self - refresh. l 2 cs# input chip select: all commands are masked when cs# is registered high. cs# provides for external rank selection on systems with multiple ranks. cs# is considered part of the command code. k 1 odt input on die termination: odt (registered high) enables termination resistance internal to the d dr3 sdram. when enabled, odt is applied to each dq, dqsu, dqsu#, dqsl, dqsl#, dmu, and dml signal . t he odt signal will be ignored if mode registers mr1 and mr2 are programmed to disable odt and during self re fresh . j 3, k 3, l 3 ras#, cas# , we# input command inputs: ras#, cas# and we# (along with cs#) define the command being entered. d 3, e7 dm u , dm l input input data mask: dm u and dml are the input mask signal s control the lower or upper bytes for write data. input data is masked when dm u/dml is sampled high coincident with that input data during a write access. dm is sampled on both edges of dqs. m2, n8, m3 ba0 ? ba2 input bank address inputs: ba0 ? ba2 define to which bank an active, read, write, or precharge command is being applied. bank address also determines which mode register is to be accessed during a mrs cycle. n3, p7, p3, n2, p8, p2, r8, r2, t8, r3, l7, r7, n7 , t3 a0?a13 input address input s: provide the row address for active commands a nd the column address for read/ write commands to select one location out of the memory array in the respective bank. (a10/ap and a12/bc# have additional functions; see below). the address inputs also provide the op - code during mode register set command . row address: a0 ? a13 . column address: a0?a9. l 7 a10/ ap input auto - precharge: a10 is sampled during read/write commands to determine whether auto - precharge should be performed to the accessed bank after the read/write operation. (high: auto - precharge ; low: no auto - precharge ). a10 is sampled during a precharge command to determine whether the precharge applies to one bank (a10 low) or all banks (a10 high). if only one bank is to be precharged, the bank is selected by bank addresses. n 7 a1 2 / bc# input burst chop: a12/ bc# is sampled during read and write commands to determine if burst chop (on - the - fly) will be performed. (high, no burst chop; low: burst chopped). see section 9 .1 command truth table on p age 9 4 for details. t 2 reset# input active low asynchronous reset: reset is active when reset# is low, and inactive when reset# is high. reset# must be high during normal operation. reset# is a cmos rai to rail signal with dc high and low at 80% and 20% of v dd , reset# active is destructive to data contents .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 10 - e3, f7, f2, f8, h3, h8, g2, h7 dq l 0 ? dq l 7 input/output data input/ output: lower byte of bi - directional data bus. d7, c3, c8, c2, a7, a2, b8, a3 dqu0 ? dqu7 input/output data input/ output: upp er byte of bi - directional data bus. f3, g3 dqsl, dqsl# input/output lower byte d ata strobe: data strobe output with read data, input with write data of dql[7:0] . edge - aligned with read data, centered in write data. dqsl is paired with dqsl# to provide differential pair signaling to the system during read and write data transfer. ddr3 sdram supports differential data strobe only and does not support single - ended. c7, b7 dqsu, dqsu# input/outpu t upp er byte d ata strobe: data strobe output with read data, input with write data of dq u [7:0] . edge - aligned with read data, centered in write data. dqs u is paired with dqs u # to provide differential pair signaling to the system during read and write data t ransfer. ddr3 sdram supports differential data strobe only and does not support single - ended. b2, d9, g7, k2, k8, n1, n9, r1, r9 v dd supply power supply: 1. 5 v 0. 075 v . a9, b3, e1, g8, j2, j8, m1, m9, p1, p9, t1, t9 v ss supply ground . a1, a8, c1, c9, d2, e9, f1, h2, h9 v ddq supply dq power supply: 1. 5 v 0. 075 v . b1, b9, d1, d8, e2, e8, f9, g1, g9 v ssq supply dq ground . h 1 v ref dq supply reference voltage for dq . m 8 v ref ca supply reference v oltage for control, command and address inputs . l 8 zq supply external reference ball for output drive and on - die termination impedance calibration : this ball n eeds an external 240 1% external resist or (rzq), connected from this ball to ground to perform zq calibration . j1, j9, l1, l9, m7, t7 nc no connect: no internal electrical connection is present . n ote: input only ball s (ba0 - ba2, a0 - a13 , ras#, cas#, we#, cs#, cke, odt and reset#) do not supply termination.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 11 - 7. block diagram c k e a 1 0 c l o c k b u f f e r c o m m a n d d e c o d e r a d d r e s s b u f f e r r e f r e s h c o u n t e r c o l u m n c o u n t e r c o n t r o l s i g n a l g e n e r a t o r m o d e r e g i s t e r c o l u m n d e c o d e r s e n s e a m p l i f i e r c o l u m n d e c o d e r s e n s e a m p l i f i e r d a t a c o n t r o l c i r c u i t d m m a s k l o g i c d q b u f f e r c o l u m n d e c o d e r s e n s e a m p l i f i e r n o t e : t h e c e l l a r r a y c o n f i g u r a t i o n i s 1 6 3 8 4 * 1 0 2 4 * 1 6 r o w d e c o d e r r o w d e c o d e r r o w d e c o d e r a 0 a 9 a 1 1 a 1 2 a 1 3 c s # r a s # c a s # w e # c k , c k # p r e f e t c h r e g i s t e r o d t c o n t r o l c o l u m n d e c o d e r s e n s e a m p l i f i e r c o l u m n d e c o d e r c o l u m n d e c o d e r s e n s e a m p l i f i e r c o l u m n d e c o d e r c e l l a r r a y b a n k # 5 r o w d e c o d e r r o w d e c o d e r r o w d e c o d e r r o w d e c o d e r o d t c e l l a r r a y b a n k # 7 c e l l a r r a y b a n k # 4 c e l l a r r a y b a n k # 6 c e l l a r r a y b a n k # 3 c e l l a r r a y b a n k # 2 c e l l a r r a y b a n k # 1 z q c a l z q c l , z q c s r z q v s s q z q t o o d t / o u t p u t d r i v e r s b a 2 b a 1 b a 0 c o l u m n d e c o d e r s e n s e a m p l i f i e r r o w d e c o d e r c e l l a r r a y b a n k # 0 d l l c k , c k # w r i t e d r i v e r s r e a d d r i v e r s d q l 0 ? d q l 7 l d q s , l d q s # d q u 0 ? d q u 7 l d q s , l d q s # d q l 0 ? d q l 7 l d q s , l d q s # d q u 0 ? d q u 7 u d q s , u d q s # l d m , u d m l d m , u d m
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 12 - 8. functional descripti on 8.1 basic functionality the ddr3 sdram is a high - speed dynamic random - access memory internally configured as an eight - bank dram. the ddr3 sdram uses a n 8n prefetch architecture to achieve high - speed operation. the 8n prefetch architecture is combined with an interface designed to transfer two data words per clock cycle at the i/o pins. a single read or write operation for the ddr3 sdram consists of a single 8n - bit wide, four clock data transfer at the internal dram core and eight corresponding n - bit wide, one - half clock cycle data transfers at the i/o pins . read and write operation to the ddr3 sdram are burst oriented, start at a selected location, and continue for a burst length of eight or a chopped burst of four in a programmed sequence. operation begins with the registration of an active command, which is then followed by a read or write command. the address bits registered coincident with the active command are used to select the bank and row to be activat ed (ba0 - ba2 select the bank; a0 - a13 select the row). the address bits registered coincident with the read or write command are used to select the starting column location for the burst operation, determine if the auto precharge command is to be issued (via a10), and select bc4 or bl8 mode on the fly (via a12) if enabled in the mode register. prior to normal operation, the ddr3 sdram must be powered up and initialized in a predefined manner. the following sections provide detailed information covering devi ce reset and initialization, register definition, command descriptions, and device operation. 8.2 reset and initialization procedure 8.2.1 power - up initialization sequence the following sequence is required for power up and initialization . 1. apply power (reset# is rec ommended to be maintained below 0.2 * v dd ; all other inputs may be undefined). reset# needs to be maintained for minimum 200 s with stable power. cke is pulled low anytime before reset# being de - asserted (min. time 10 n s ). the power voltage ramp time be tween 300 m v to v dd min . must be no greater than 200 m s ; and during the ramp, v dd v ddq and ( v dd - v ddq ) < 0.3 v olts. ? v dd and v ddq are driven from a single power converter output, and ? the voltage levels on all pins other than v dd , v ddq , v ss , v ssq must be less than or equal to v ddq and v dd on one side and must be larger than or equal to v ssq and v ss on the other side. in addition, v tt is limited to 0.95 v max once power ramp is finished, and ? v ref tracks v ddq /2. or ? apply v dd without any slope revers al before or at the same time as v ddq . ? apply v ddq without any slope reversal before or at the same time as v tt & v ref . ? the voltage levels on all pins other than v dd , v ddq , v ss , v ssq must be less than or equal to v ddq and v dd on one side and must be larger than or equal to v ssq and v ss on the other side. 2. after reset# is de - asserted, wait for another 500 s until cke becomes active. during this time, the dram will start internal state initialization; this will be done independe ntly of external clocks. 3. clocks (ck, ck#) need to be started and stabilized for at least 10 n s or 5 t ck (which is larger) before cke goes active. since cke is a synchronous signal, the correspondi ng set up time to clock (t is ) must be met. also, a nop or de select command must be registered (with t is set up time to clock) before cke goes active. once the cke is registered high after reset, cke needs to be continuously registered high until the initialization sequence is finished, including expiration of t dllk and t zq init.
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 13 - 4. the ddr3 sdram keeps its on - die termination in high - imped ance state as long as reset# is asserted. further, the sdram keeps its on - die termination in high impedance state after reset# deassertion until cke is registered high. the odt inp ut signal may be in undefined state until t is before cke is registered high. when cke is registered high, the odt input signal may be statically held at either low or high. if r tt _n om is to be enabled in mr1, the odt input signal must be statically held low. in all cases, the odt input signal remains static until the power up initialization sequence is finished, including the expiration of t dllk and t zq init . 5. after cke is being registered high, wait minimum of reset cke exit time, t xpr , before issuing the first mrs command to load mode register. (t xpr =max (t xs ; 5 * t ck ) 6. issue mrs command to load mr2 with all application settings. (to issue mrs command for mr2, provide low to ba0 and ba2, high to ba1.) 7. issue mrs command to load mr3 with all application settings. (to issue mrs command for mr3, provide low to ba2, high to ba0 and ba1.) 8. issue mrs command to load mr1 with all application settings and dll enabled. (to issue dll enable command, provide low to a0, high to ba0 and low to ba1 - ba2). 9. is sue mrs command to load mr0 with all application settings and dll reset. (to issue dll reset command, provide high to a8 and low to ba0 - 2). 10. issue zqcl command to starting zq calibration. 11. wait for both t dllk and t zq init completed. 12. the ddr3 sdram is no w ready for normal operation . n ote : 1 . from time point td until tk nop or des commands must be applied between mrs and zqcl commands. figure 1 C reset and initialization sequence at power - on ramping t i m e b r e a k d o n ' t c a r e t a t b t c t d t e t f t g t h t i t j t k c k , c k # v d d , v d d q r e s e t # c o m m a n d b a o d t r t t t c k s r x t = 2 0 0 s t = 5 0 0 s t d l l k v a l i d v a l i d v a l i d v a l i d s t a t i c l o w i n c a s e r t t _ n o m i s e n a b l e d a t t i m e t g , o t h e r w i s e s t a t i c h i g h o r l o w * 1 z q c l m r s * 1 m r s m r s m r s m r 2 m r 3 m r 1 m r 0 t i s t i s t i s t i s t x p r t m r d t m r d t m r d t m o d t z q i n i t t m i n c k e 1 0 n s
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 14 - 8.2.2 reset initialization with stable power the following sequence is required for reset at no power interruption initialization . 1. asserted reset below 0.2 * v dd anytime when reset is needed (all other inputs may be undefined). reset needs to be maintained for minimum 100 n s . cke is pulled low before reset being de - asserted (min. time 10 n s ). 2. follow power - up initialization sequence steps 2 to 11 . 3. the reset sequence is now completed; ddr3 sdram is ready for normal operation. n ote : 1 . from time point td until tk nop or des commands must be applied between mrs and zqcl commands . figure 2 C reset procedure at power stable condition t i m e b r e a k d o n ' t c a r e t a t b t c t d t e t f t g t h t i t j t k c k , c k # v d d , v d d q r e s e t # c o m m a n d b a o d t r t t t c k s r x t = 1 0 0 n s t = 5 0 0 s t d l l k v a l i d v a l i d v a l i d v a l i d s t a t i c l o w i n c a s e r t t _ n o m i s e n a b l e d a t t i m e t g , o t h e r w i s e s t a t i c h i g h o r l o w * 1 z q c l m r s * 1 m r s m r s m r s m r 2 m r 3 m r 1 m r 0 t i s t i s t i s t i s t x p r t m r d t m r d t m r d t m o d t z q i n i t t m i n = 1 0 n s c k e
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 15 - 8.3 programming the mode registers for application flexibility, various functions, features, and modes are programmable in four mode registers, provided by the ddr3 sdram, as user defined variables and they must be programmed via a mode register set (mrs) command. as the default values of the mode registers (mr#) are not defined, contents of mode registers must be fully initi alized and/or re - initialized, i.e., written, after power up and/or reset for proper operation. also the contents of the mode registers can be altered by re - executing the mrs command during normal operation. when programming the mode registers, even if the user chooses to modify only a sub - set of the mrs fields, all address fields within the accessed mode register must be redefined when the mrs comm and is issued. mrs command and dll res et do not affect array contents, which mean these commands can be executed any time after power - up without affecting the array contents . the mode register set command cycle time, t mrd is required to complete the write operation to the mode register and is the minimum time required between two mrs commands shown in figure 3 . figure 3 C t mrd timing t i m e b r e a k d o n ' t c a r e t 0 t 1 t 2 t a 0 t a 1 t b 0 t b 1 t b 2 t c 0 t c 1 t c 2 c k # c k c o m m a n d o d t c k e v a l i d a d d r e s s v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d n o p / d e s n o p / d e s m r s n o p / d e s n o p / d e s m r s v a l i d o d t s e t t i n g s v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d o l d s e t t i n g s u p d a t i n g s e t t i n g s n e w s e t t i n g s t m r d t m o d o d t l o f f + 1 r t t _ n o m d i s a b l e d p r i o r a n d / o r a f t e r m r s c o m m a n d r t t _ n o m e n a b l e d p r i o r a n d / o r a f t e r m r s c o m m a n d
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 16 - the mrs command to non - mrs command delay , t m o d is required for the dram to update the features, except dll reset, and is the minimum time required from a mrs command to a non - mrs command excluding nop and des shown in figure 4 . figure 4 C t m o d timing the mode register contents can be changed using the same command and timing requirements during normal operation as long as the dram is in idle state, i.e., all banks are in the precharged state with t rp satisfied, all data bursts are completed and cke is high prior to writing into the mode register. if the r tt _n om feature is enabled in the mod e register prior and/or after a mrs c ommand, the odt s ignal must continuously be registered low ensuring r tt is in an off s tate prior to the mrs command. the odt s ignal may be registered high after t mod has expired. if the r tt _n om f eature is disabled in the mode register prior and after a mrs command, the odt s ignal can be register ed either low or high before, during and after the mrs command. the mode registers are divided into various fields depending on the functionality and/or modes . t i m e b r e a k d o n ' t c a r e t 0 t 1 t 2 t a 0 t a 1 t a 2 t a 3 t a 4 t b 0 t b 1 t b 2 c k # c k c o m m a n d o d t c k e v a l i d a d d r e s s v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d n o p / d e s n o p / d e s n o p / d e s n o p / d e s n o p / d e s m r s v a l i d o d t s e t t i n g s v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d o l d s e t t i n g s u p d a t i n g s e t t i n g s n e w s e t t i n g s t m o d r t t _ n o m e n a b l e d p r i o r a n d / o r a f t e r m r s c o m m a n d r t t _ n o m d i s a b l e d p r i o r a n d / o r a f t e r m r s c o m m a n d o d t l o f f + 1
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 17 - 8.3.1 mode register mr0 the mode register mr0 stores the data for controlling various operating modes of ddr3 sdram. it controls burst length, read burst type, cas latency, test mode, dll reset, wr and dll control for precharge power down, which include various vendor specific options to make ddr3 sdram useful for various applications. the mode regis ter is written by asserting low on cs # , ras # , cas # , we # , ba0, ba1 and ba2, while controlling the states of address pins according to the figure 5 below . note s : 1. ba2 and a13 are reserved for future use and must be programmed to 0 during mrs. 2. wr (write recovery for a uto precharge)min in clock cycles is calculated by dividing t wr (in n s ) by t ck (in n s ) and rounding up to the next integer: wrmin[cycles] = roundup(t wr [n s ] / t ck (avg) [n s ]). the wr value in the mode register must be p rogrammed to be equal or larger than wrmin. the programmed wr value is used with t rp to determine t dal . 3. the table only shows the encodings for a given cas latency. for actual supported c as latency, please refer to speed bins tables for each frequency . 4. the table only shows the encodings for write recovery. for actual write recovery timing, please refer to ac timing table. figure 5 C mr0 definition b a 1 b a 0 a 1 2 a 1 1 a 1 0 a 9 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 * 1 p p d w r d l l r b t c l b l t m 0 1 n o y e s 0 0 0 1 1 0 1 1 m r 0 m r 1 m r 2 m r 3 1 0 s l o w e x i t ( d l l o f f ) f a s t e x i t ( d l l o n ) b u r s t l e n g t h a d d r e s s f i e l d m o d e r e g i s t e r 0 w r i t e r e c o v e r y f o r a u t o p r e c h a r g e c a s l a t e n c y 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 r e s e r v e d 7 8 9 1 1 1 0 r e s e r v e d 6 0 0 0 1 8 ( f i x e d ) b c 4 o r 8 ( o n t h e f l y ) 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 6 * 2 5 * 2 6 * 2 7 * 2 8 * 2 1 0 * 2 1 4 * 2 1 2 * 2 0 1 n o r m a l t e s t 0 1 n i b b l e s e q u e n t i a l i n t e r l e a v e 0 0 a 1 3 c l 0 0 0 0 1 1 1 1 1 1 0 1 b c 4 ( f i x e d ) r e s e r v e d b a 2 0 * 1 0 1 0 0 0 1 1 1 1 r e s e r v e d r e s e r v e d 1 3 0 0 0 0 1 0 1 1 1 r e s e r v e d r e s e r v e d 1 0 0 1 1 1 1 0 1 1 1 r e s e r v e d r e s e r v e d r e s e r v e d 1 1 1 b a 0 b a 1 m r s m o d e a 8 d l l r e s e t a 1 2 d l l c o n t r o l f o r p r e c h a r g e p d a 9 w r ( c y c l e s ) a 1 0 a 1 1 a 7 m o d e a 3 r e a d b u r s t t y p e a 6 a 5 a 2 a 4 l a t e n c y b l a 0 a 1
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 18 - 8.3.1.1 burst length, type and order accesses within a given burst may be programmed to sequential or interleaved order. the burst type is selected via bit a3 as shown in figure 5 . the ordering of accesses within a burst is determined by the burst length, burst ty pe, and the starting column address as shown in table 1 . the burst length is defined by bits a0 - a1. burst length options include fixed bc4, fixed bl8 and on the fly which allows bc4 or bl8 to be selected coincident with the registration of a read or writ e command via a12/bc # . table 1 C burst type and burst order burst length read/ write starting column address (a2, a1, a0) burst type = sequential (decimal) a3 = 0 burst type = interleaved (decimal) a3 = 1 notes 4 chop read 0 0 0 0,1,2,3,t,t,t,t 0,1,2,3,t,t,t,t 1, 2, 3 0 0 1 1,2,3,0,t,t,t,t 1,0,3,2,t,t,t,t 1, 2, 3 0 1 0 2,3,0,1,t,t,t,t 2,3,0,1,t,t,t,t 1, 2, 3 0 1 1 3,0,1,2,t,t,t,t 3,2,1,0,t,t,t,t 1, 2, 3 1 0 0 4,5,6,7,t,t,t,t 4,5,6,7,t,t,t,t 1, 2, 3 1 0 1 5,6,7,4,t,t,t,t 5,4,7,6,t,t,t,t 1, 2, 3 1 1 0 6,7,4,5,t,t,t,t 6,7,4,5,t,t,t,t 1, 2, 3 1 1 1 7,4,5,6,t,t,t,t 7,6,5,4,t,t,t,t 1, 2, 3 write 0,v,v 0,1,2,3,x,x,x,x 0,1,2,3,x,x,x,x 1, 2, 4, 5 1 ,v,v 4,5,6,7,x,x,x,x 4,5,6,7,x,x,x,x 1, 2, 4, 5 8 read 0 0 0 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7 2 0 0 1 1,2,3,0,5,6,7,4 1,0,3,2,5,4,7,6 2 0 1 0 2,3,0,1,6,7,4,5 2,3,0,1,6,7,4,5 2 0 1 1 3,0,1,2,7,4,5,6 3,2,1,0,7,6,5,4 2 1 0 0 4,5,6,7,0,1,2,3 4,5,6,7,0,1,2,3 2 1 0 1 5,6,7,4,1,2,3,0 5,4,7,6,1,0,3,2 2 1 1 0 6,7,4,5,2,3,0,1 6,7,4,5,2,3,0,1 2 1 1 1 7,4,5,6,3,0,1,2 7,6,5,4,3,2,1,0 2 write v,v,v 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7 2, 4 note s : 1. in case of burst length being fixed to 4 by mr0 setting, the internal write operation starts two clock cycles earlier than for the bl8 mode. this means that the starting point for t wr and t wtr will be pulled in by two clocks. in case of burst length being selected on - the - fly via a12/bc#, the internal write operation starts at the same point in time like a burst of 8 write operation. this means that during on - the - fly control, the starting point for t wr and t wtr will not be pulled in by two clocks . 2. 0...7 bit number is value of ca[2:0] that causes this bit to be the first read during a burst . 3. t: output driver for data and str obes are in high impedance . 4. v: a valid logic level (0 or 1), but respective buffer input ignores level on input pins . 5. x: d on't c are . 8.3.1.2 cas latency the cas latency is defined by mr0 ( bits a2, a4, a5 and a6 ) as shown in figure 5 . cas latency is the delay, in clock cycles, between the internal read command and the availability of the first bit of output data. ddr3 sdram does not support any half - clock latencies. the overall read latency (rl) is defined as additive latency (al) + cas latency (cl); rl = al + cl. for more information on the supported cl and al settings based on the operating clock frequency , refer to section 10 .1 5 speed bins on page 1 3 4 . for d etailed read operation refer to section 8 .1 3 read operation on page 4 3 .
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 19 - 8.3.1.3 test mode the normal operating mode is selected by mr0 (bit a7 = 0) and all other bits set to the desired values shown in figure 5 . programming bit a7 to a 1 places the ddr3 sdram into a test mode that is only used by the dram manufacturer and should not be used. no operations or functionality is specified if a7 = 1. 8.3.1.4 dll reset the dll reset bit is self - clearing, meaning that it returns back to the value of 0 after the dll reset function has been issued. once the dll is enabled, a subsequent dll reset should be applied. any time that the dll reset function is used, t dllk must b e met before any functions that require the dll can be used (i.e., read commands or odt synchronous operations) . 8.3.1.5 write recovery the programmed wr value mr0 (bits a9, a10 and a11) is used for the auto precharge feature along with t rp to determine t dal . wr ( write recovery for auto - precharge) min in clock cycles is calculated by dividing t wr (in n s ) by t ck (avg) (in n s ) and rounding up to the next integer: wrmin[cycles] = roundup (t wr [n s ]/t ck (avg) [n s ]). the wr must be programmed to be equal to or larger than t wr (min). 8.3.1.6 precharge pd dll mr0 (bit a12) is used to select the dll usage during precharge power down mode. when mr0 (a12 = 0), or slow - exit, the dll is frozen after entering precharge power down (for potential power savings) and upon exit requires t xpdll to be met prior to the next valid command. when mr0 (a12 = 1), or fast - exit, the dll is maintained after entering precharge power down and upon exiting power down requires t xp to be met prior to the next valid command.
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 20 - 8.3.2 mode register mr1 the mode register mr1 stores the data for enabling or disabling the dll, output driver strength, rtt_nom impedance, additive latency, write leveling enable and qoff. the mode register 1 is written by asserting low on cs#, ras#, cas#, we#, high on ba0 and low on ba1 and ba2 , while controlling the states of address pins according to the figure 6 below . note s : 1. ba2, a8 , a10, a11 and a1 3 are reserved for future use and must be programmed to 0 during mrs . 2. outputs disabled - dqs, dqss, dqs#s . 3. in write leveling mode (mr1 a [7] = 1) with mr1 a [12]=1, all r tt _nom settings are allowed; in write leveling mode (mr1 a [7] = 1) with mr1 a [12]=0, only r tt _nom settings of rzq/2, rzq/4 and rzq/6 are allowed . 4. if rtt_nom is used during writes, only the values rz q/2, rzq/4 and rzq/6 are allowed . figure 6 C mr 1 definition 8.3.2.1 dll enable/disable the dll must be enabled for normal operation. dll enable is required during power up initialization, and upon returning to normal operation after having the dll disabled. during normal operation (dll - on) with mr1 (a0 = 0), the dll is automatically disabled when entering self refresh operation and is automatically re - enabled upon exit of self refresh operation. any time the dll is enabled and subsequently reset, t dllk clock cycles must occur before a read or synchronous odt command can be issued to allow time for the internal clock to be synchronized with the external clock. failing to wait for synchronization to occur may result in a violation of the t dqsck , t aon or t aof parameter s. during t dllk , cke must continuously be registered high. ddr3 sdram does not require dll for any write operation , except when rtt_wr is enabled and the dll is required for proper odt operation. for more detailed information on dll disable operation refer to section 8 .6 dll - off mode on page 2 5 . the direct odt feature is not supported during dll - off mode. the on - die termination resistors must be disabled by continuously registering the odt pin low and/or by programming the rtt_nom bits mr1{a9,a6,a2} to {0,0,0} via a mode register set command during dll - off mode. b a 1 a 1 2 a 1 1 a 1 0 a 9 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 1 0 * 1 r t t _ n o m b t r t t _ n o m a d d r e s s f i e l d m o d e r e g i s t e r 1 0 0 0 0 1 1 1 1 m r 0 m r 1 m r 2 m r 3 w r a l q o f f 0 * 1 0 * 1 r t t _ n o m d . i . c d l l 0 a 0 1 e n a b l e d i s a b l e r t t _ n o m d i s a b l e d r z q / 6 r z q / 1 2 * 4 r z q / 4 r z q / 2 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 o u t p u t b u f f e r e n a b l e d o u t p u t b u f f e r d i s a b l e d * 2 1 0 e n a b l e d d i s a b l e d b a 0 a 1 3 0 d . i . c l e v e l 0 * 1 0 0 1 1 0 1 0 1 0 ( a l d i s a b l e d ) r e s e r v e d c l - 1 c l - 2 r e s e r v e d r e s e r v e d r z q / 8 * 4 1 1 1 1 0 0 1 1 1 a 5 0 0 1 1 a 1 0 1 0 1 r z q / 6 r e s e r v e d r z q / 7 r e s e r v e d n o t e : r z q = 2 4 0 o h m s n o t e : r z q = 2 4 0 o h m s b a 2 0 * 1 o u t p u t d r i v e r i m p e d a n c e c o n t r o l a 9 a 6 a 2 r t t _ n o m * 3 b a 1 b a 0 m r s e l e c t a 7 w r i t e l e v e l i n g e n a b l e a 1 2 q o f f * 2 d l l e n a b l e a 4 a 3 a d d i t i v e l a t e n c y
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 21 - the dynamic odt feature is not supported at dll - off mode. user must use mrs command to set rtt_wr, mr2 {a10, a9} = {0,0}, to disable dynamic odt externally. 8.3.2.2 output driver impedance control the output driver impedance of the ddr3 sdram device is selected by mr1 (bits a1 and a5) as shown in figure 6 . 8.3.2.3 odt r tt values ddr3 sdram is capable of providing two different termination values (rtt_nom and rtt_wr). the nominal termination value rtt_nom is programmed in mr1. a separate value (rtt_wr) may be programmed in mr2 to enable a unique r tt value when odt is enabled during writes. the rtt_wr value can be applied during writes even when rtt_nom is disabled. 8.3.2.4 additive latency (al) additive latency (al) operation is supported to make command and data bus efficient for sustainable bandwidths in ddr3 sdram. in this operation, the ddr3 sdram allows a read or write command (either with or without auto - precharge) to be issued immediately after the active command. the command is held for the time of the additive latency (al) before it is issued inside the device. the read latency (rl) is controlled by the sum of the al and cas latency (cl) register settings. write latency (wl) is controlled by the sum of the al and cas write latency (cwl) register settings. a summary of the al register options are shown in t able 2 . table 2 C additive latency (al) settings a4 a 3 al 0 0 0 (al disabled) 0 1 cl - 1 1 0 cl - 2 1 1 reserved note: al has a value of cl - 1 or cl - 2 as per the cl values programmed in the mr0 register . 8.3.2.5 write levelin g for better signal integrity, ddr3 memory module adopted fly - by topology for the commands, addresses, control signals, and clocks. the fly - by topology has the benefit of reducing the number of stubs and their length, but it also causes flight time skew between clock and strobe at every dram on the dimm. this makes it difficult for the c ontroller to maintain t dqss , t dss , and t dsh specification. therefore, the ddr3 sdram supports a write leveling feature to allow the controller to compensate for skew . see section 8 .9 write leveling on page 30 for more details. 8.3.2.6 output disable the ddr3 sdram outputs may be enabled/disabled by mr1 (bit a12) as shown in figure 6 . when this feature is enabled (a12 = 1), all output pins (dqs, dqs, dqs#, etc.) are disconnected from the device, thus removing any loading of the output drivers. this feature may be useful when measuring module power, for example. for normal operation, a12 should be set to 0 .
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 22 - 8.3.3 mode register mr 2 the mode register mr2 stores t he data for controlling refresh related features, rtt_wr impedance, and cas write latency. the mode register 2 is written by asserting low on cs#, ras#, cas#, we#, high on ba1 and low on ba0 and ba2, while controlling the states of address pins according t o the figure 7 below . note s : 1. ba2, a8, a11 ~ a13 are reserved for future use and must be programmed to 0 during mrs . 2. the rtt_wr value can be applied during writes even when rtt_nom is disabled. during write leveling, dynamic odt is not available . figure 7 C mr 2 definition b a 1 a 1 2 a 1 1 a 1 0 a 9 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 r t t _ w r a s r a d d r e s s f i e l d m o d e r e g i s t e r 2 b a 1 b a 0 0 0 0 0 1 1 1 1 m r 0 m r 1 m r 2 m r 3 5 ( t c k ( a v g ) 2 . 5 n s ) 8 ( 1 . 5 n s > t c k ( a v g ) 1 . 2 5 n s ) 9 ( 1 . 2 5 n s > t c k ( a v g ) 1 . 0 7 n s ) 6 ( 2 . 5 n s > t c k ( a v g ) 1 . 8 7 5 n s ) 7 ( 1 . 8 7 5 n s > t c k ( a v g ) 1 . 5 n s ) a 5 a 4 a 3 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 a 7 1 0 n o r m a l o p e r a t i n g t e m p e r a t u r e r a n g e e x t e n d e d o p e r a t i n g t e m p e r a t u r e r a n g e a s r e n a b l e m a n u a l s r r e f e r e n c e ( s r t ) b a 0 a 1 3 1 0 0 * 1 r e s e r v e d r e s e r v e d r e s e r v e d 1 1 1 1 0 0 1 1 1 a 1 0 0 0 1 1 a 9 0 1 0 1 d y n a m i c o d t o f f ( w r i t e d o e s n o t a f f e c t r t t v a l u e ) r e s e r v e d r z q / 4 r z q / 2 a 2 0 0 0 0 1 1 1 1 a 1 0 0 1 1 0 0 1 1 a 0 0 1 0 1 0 1 1 0 f u l l a r r a y 1 / 8 t h a r r a y ( b a [ 2 : 0 ] = 0 0 0 ) 3 / 4 a r r a y ( b a [ 2 : 0 ] = 0 1 0 , 0 1 1 , 1 0 0 , 1 0 1 , 1 1 0 & 1 1 1 ) 1 / 8 t h a r r a y ( b a [ 2 : 0 ] = 1 1 1 ) q u a r t e r a r r a y ( b a [ 2 : 0 ] = 1 1 0 & 1 1 1 ) h a l f a r r a y ( b a [ 2 : 0 ] = 0 0 0 , 0 0 1 , 0 1 0 & 0 1 1 ) q u a r t e r a r r a y ( b a [ 2 : 0 ] = 0 0 0 & 0 0 1 ) h a l f a r r a y ( b a [ 2 : 0 ] = 1 0 0 , 1 0 1 , 1 1 0 & 1 1 1 ) 0 * 1 s r t c w l p a s r b a 2 0 * 1 m r s e l e c t a 6 1 0 a u t o s e l f r e f r e s h ( a s r ) s e l f r e f r e s h t e m p e r a t u r e ( s r t ) r a n g e r t t _ w r * 2 p a r t i a l a r r a y s e l f r e f r e s h f o r 8 b a n k s c a s w r i t e l a t e n c y ( c w l )
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 23 - 8.3.3.1 partial array self refresh (pasr) if pasr (partial array self refresh) is enabled, data located in areas of the array beyond the specified address range shown in figure 7 will be lost if self refresh is entered. data integrity will be maintained if t refi conditions are met and no self refresh command is issued . 8.3.3.2 cas write latency (cwl) the cas write latency is defined by mr2 (bits a3 - a5), as shown in figure 7 . cas write lat ency is the delay, in clock cycles, between the internal write command and the availability of the first bit of input data. ddr3 sdram does not support any half - clock latencies. the overall write latency (wl) is defined as additive latency (al) + cas write latency (cwl); wl = al + cwl. for more information on the supported cwl and al settings based on the operating clock frequency , refer to section 10 .1 5 speed bins on page 1 3 4 . for detailed write operation refer to section 8 .14 write operation on page 5 6 . 8.3.3.3 auto self refresh (asr) and self refresh temperature (srt) ddr3 sdram must support self refresh operation at all supported temperatures. applications requiring self refresh operation in the extended temperature range must use the asr function or program the srt bit appropriately. when asr enabled, ddr3 sdram automatically provides self refresh power management functions for all supported operating temperature values. if not enabled, the srt bit must be programmed to indicate t oper during subsequen t self refresh operation. asr = 0, self refresh rate is determined by srt bit a7 in mr2 . asr = 1, self refresh rate is determined by on - die thermal sensor. srt bit a7 in mr2 is don't care . 8.3.3.4 dynamic odt (rtt_wr) ddr3 sdram introduces a new feature dynamic odt . in certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination strength of th e ddr3 sdram can be changed without issuing an mrs command. mr2 register locations a9 and a10 configure the dynamic odt set t ings. in write leveling mode, only r tt _nom is available . for details on dynamic odt operation, refer to section 8 . 19 . 3 dynamic odt on page 8 3 .
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 24 - 8.3.4 mode register mr 3 the mode register mr3 controls multi purpose registers. the mode register 3 is written by asserting low on cs#, ras#, cas#, we#, high on ba1 and ba0, and low on ba2 while controlling the states of address pins according to the figure 8 below . note s : 1. ba2, a3 ~ a13 are reserved for future use and must be programmed to 0 during mrs . 2. the predefined pattern will be used for read synchronization . 3. when mpr control is set for normal operation (mr3 a[2] = 0) then mr3 a[1:0] will be ignored . figure 8 C mr3 definitio n 8.3.4.1 multi purpose register (mpr) the multi purpose register (mpr) function is used to read out a predefined system timing calibration bit sequence. to enable the mpr, a mode register set (mrs) command must be issued to mr3 register with bit a2 = 1. prior to issuing the mrs command, all banks must be in the idle state (all banks precharged and t rp met). once the mpr is enabled, any subsequent rd or rda commands will be redirected to the multi purpose register. when the mpr is enabled, only rd or rda commands are allowed until a subsequent mrs command is issued with the mpr disable d (mr3 bit a2 = 0). power down mode, self refresh, and any other non - rd/rda command is not allowed during mpr enable mode. the reset function is supported during mpr enable mode . for detailed mpr operation refer to section 8 .10 multi purpose register on page 3 4 . b a 1 a 1 2 a 1 1 a 1 0 a 9 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 a d d r e s s f i e l d m o d e r e g i s t e r 3 b a 1 b a 0 m r s e l e c t 0 0 0 0 1 1 1 1 m r 0 m r 1 m r 2 m r 3 d a t a f l o w f r o m m p r n o r m a l o p e r a t i o n * 3 b a 0 a 1 3 1 1 m p r l o c m p r 0 * 1 m p r o p e r a t i o n a 1 a 0 0 0 0 0 1 1 1 1 p r e d e f i n e d p a t t e r n * 2 r f u r f u r f u m p r a d d r e s s b a 2 0 * 1 a 2 0 1 m p r m r s e l e c t m p r l o c a t i o n
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 25 - 8.4 no operation (nop) command the no operation (nop) command is used to instruct the selected ddr3 sdram to perform a nop (cs# low and ras#, ca s#, and we# high). this prevents unwanted commands from being registered during idle or wait states. operations already in progress are not affected . 8.5 deselect command the deselect function (cs# high) prevents new commands from being executed by the ddr3 sdram. the ddr3 sdram is effectively deselected. operations already in progress are not affected . 8.6 dll - off mode ddr3 dll - off mode is entered by setting mr1 bit a0 to 1; this will disable the dll for subsequent operations until a0 bit is set back to 0. t he mr1 a0 bit for dll control can be switched either during initialization or later. refer to section 8 . 8 input clock frequency change on page 2 8 . th e dll - off mode operations listed below are an optional feature for ddr3. the maximum clock frequency for dll - off mode is specified by the parameter t ck ( dll_off ) . there is no minimum frequency limit besides the need to satisfy the refresh interval, t refi . due to latency counter and timing restrictions, only one value of cas latency (cl) in mr0 and cas write latency (cwl) in mr2 are supported. the dll - off mode is only required to support setting of both cl=6 and cwl=6. dll - off mode will affect the read data clock to data strobe relationship (t dqsck ), but not the data strobe to data relationship (t dqsq , t qh ). special attention is needed to line up read data to controller time domain. comparing with dll - on mode, where t dqsck starts from the rising clock edge (a l+cl) cycles after the read command, the dll - off mode t dqsck starts (al+cl - 1) cycles after the read command. another difference is that t dqsck may not be small compared to t ck (it might even be larger than t ck ) and the difference between t dqsck min and t dqsck max is significantly larger than in dll - on mode. the timing relations on dll - off mode read operation is shown in the following timing diagram (cl=6, bl=8): figure 9 C dll - off mode read timing operatio n t r a n s i t i o n i n g d a t a t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d r e a d a d d r e s s n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p b a n k c o l b d o n ' t c a r e d q s , d q s # ( d l l _ o n ) d q ( d l l _ o n ) d q s , d q s # ( d l l _ o f f ) d q ( d l l _ o f f ) d q s , d q s # ( d l l _ o f f ) d q ( d l l _ o f f ) r l ( d l l _ o n ) = a l + c l = 6 ( c l = 6 , a l = 0 ) c l = 6 r l ( d l l _ o f f ) = a l + ( c l C 1 ) = 5 t d q s c k ( d l l _ o f f ) _ m i n t d q s c k ( d l l _ o n ) _ m a x d o u t b d o u t b + 1 d o u t b + 2 d o u t b + 3 d o u t b + 4 d o u t b + 5 d o u t b + 6 d o u t b + 7 d o u t b d o u t b + 1 d o u t b + 2 d o u t b + 3 d o u t b + 4 d o u t b + 5 d o u t b + 6 d o u t b + 7 d o u t b d o u t b + 1 d o u t b + 2 d o u t b + 3 d o u t b + 4 d o u t b + 5 d o u t b + 6 d o u t b + 7 n o t e : t h e t d q s c k i s u s e d h e r e f o r d q s , d q s # a n d d q t o h a v e a s i m p l i f i e d d i a g r a m ; t h e d l l _ o f f s h i f t w i l l a f f e c t b o t h t i m i n g s i n t h e s a m e w a y a n d t h e s k e w b e t w e e n a l l d q , a n d d q s , d q s # s i g n a l s w i l l s t i l l b e t d q s q .
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 26 - 8.7 dll on/off switching procedure ddr3 dll - off mode is entered by setting mr1 bit a0 to 1; this will disable the dll for subsequent operations until a0 bit is set back to 0. 8.7.1 dll on to dll off procedure to switch from dll on to dll off requires the frequency to be changed during self - refresh, as outlined in the following procedure: 1. starting from idle state (all banks pre - charged, all timings fulfilled, and drams on - die termination resistors, r tt , must be in high impedance state before mrs to mr1 to disable the dll.) 2. set mr1 bit a0 to 1 to disable the dll . 3. wait t mod . 4. enter self refresh mode; wait until (t cksre ) is satisfied. 5. change frequency, in guidance with section 8 . 8 input clock frequency change on page 2 8 . 6. wait until a stable clock is available for at least (t cksrx ) at dram inputs. 7. starting with the self refresh exit command, cke must continuously be registered high until all t mod timings from any mrs command are satisfied. in addition, if any odt features were enabled in the mode registers when self refresh mode was entered, the odt signal must continuously be registered low until all t mod timings from any mrs command are satisfie d. if both odt features were disabled in the mode registers when self refresh mode was entered, odt signal can be registered low or high . 8. wait t xs , then set mode registers with appropriate values (especially an update of cl, cwl and wr may be necessary. a zqcl command may also be issued after t xs ) . 9. wait for t mod , then dram is ready for next command. figure 1 0 C dll switch sequence from dll - on to dll - off t i m e b r e a k d o n ' t c a r e t 0 t 1 t a 0 t a 1 t b 0 t c 0 t d 0 t d 1 t e 0 t e 1 t f 0 c k # c k c k e c o m m a n d s r e * 3 n o p s r x * 6 n o p m r s * 7 n o p v a l i d * 8 o d t m r s * 2 n o p v a l i d * 8 * 1 t m o d t c k s r e * 4 t x s t m o d t c k e s r v a l i d 8 o d t : s t a t i c l o w i n c a s e r t t _ n o m a n d r t t _ w r i s e n a b l e d , o t h e r w i s e s t a t i c l o w o r h i g h n o t e s : 1 . s t a r t i n g w i t h i d l e s t a t e , r t t i n h i - z s t a t e 2 . d i s a b l e d l l b y s e t t i n g m r 1 b i t a 0 t o 1 3 . e n t e r s r 4 . c h a n g e f r e q u e n c y 5 . c l o c k m u s t b e s t a b l e t c k s r x 6 . e x i t s r 7 . u p d a t e m o d e r e g i s t e r w i t h d l l o f f p a r a m e t e r s s e t t i n g 8 . a n y v a l i d c o m m a n d t c k s r x * 5
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 27 - 8.7.2 dll off to dll on procedure to switch from dll off to dll on (with required frequency change) during self - refresh : 1. starting from idle state (all banks pre - charged, all timings fulfilled and drams on - die termination resistors (r tt ) must be in high impedance state before self - refresh mode is entered.) 2. enter self refresh mode, wait until t cksre satisfied. 3. change frequency, in guidance with section 8 . 8 input clock frequency change on page 2 8 . 4. wait until a stable clock is available for at least (t cksrx ) at dram inputs. 5. starting with the self refresh exit command, cke must continuously be registered high until t dllk timing from subsequent dll reset command is satisfied. in addition, if any odt features were e nabled in the mode registers when self refresh mode was entered, the odt signal must continuously be registered low until t dllk timings from subsequent dll reset command is satisfied. if both odt features are disabled in the mode registers when self refres h mode was entered, odt signal can be registered low or high . 6. wait t xs , then set mr1 bit a0 to 0 to enable the dll. 7. wait t mrd , then set mr0 bit a8 to 1 to start dll reset . 8. wait t mrd , then set mode registers with appropriate values (especially an update of cl, cwl and wr may be necessary. after t mod satisfied from any proceeding mrs command, a zqcl command may also be issued during or after t dllk .) 9. wait for t mod , then dram is ready for next command (remember to wait t dllk after dll reset before applying command requiring a locked dll!). in addition, wait also for t zq oper in case a zqcl command was issued. figure 1 1 C dll switch sequence from dll off to dll on t i m e b r e a k d o n ' t c a r e t 0 t a 0 t a 1 t b 0 t c 0 t d 0 t e 0 t f 1 t g 0 t h 0 c k # c k c k e c o m m a n d n o p s r x * 5 m r s * 6 m r s * 7 m r s * 8 v a l i d * 9 o d t n o p s r e * 2 v a l i d * 1 t c k s r e t c k s r x * 4 t m r d t m r d t c k e s r o d t : s t a t i c l o w i n c a s e r t t _ n o m a n d r t t _ w r i s e n a b l e d , o t h e r w i s e s t a t i c l o w o r h i g h n o t e s : 1 . s t a r t i n g w i t h i d l e s t a t e 2 . e n t e r s r 3 . c h a n g e f r e q u e n c y 4 . c l o c k m u s t b e s t a b l e t c k s r x 5 . e x i t s r 6 . s e t d l l o n b y m r 1 a 0 = 0 7 . u p d a t e m o d e r e g i s t e r s 8 . a n y v a l i d c o m m a n d t c 1 t d l l k t x s * 3 o d t l o f f + 1 x t c k
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 28 - 8.8 input clock frequency change once the ddr3 sdram is initialized, the ddr3 sdram requires the clock to be stable during almost all states of normal operation. this means that, once the clock frequency has been set and is to be in the stable state, the clock period is not allowed to deviate except for what is allowed for by the clock jitter and ssc (spread spectrum clocking) specifications . the input clock frequency can be changed from one stable clock rate to another stable clock rate under two conditions: (1) self - refresh mode and (2) precharge power - down mode. outsi de of these two modes, it is illegal to change the clock frequency. 8.8.1 frequency change during self - refresh for the first condition, once the ddr3 sdram has been successfully placed in to self - refresh mode and t cksre has been satisfied, the state of the clock becomes a d on't care . once a d on't care , changing the clock frequency is permissible, provided the new clock frequency is stable prior to t cksrx. when entering and exiting self - refresh mode for the sole purpose of changing the clock frequency, the self - re fresh entry and exit specifications must still be met as outlined in s ee section 8 .16 self - refresh operation on page 6 7 . the ddr3 sdram input clock frequency is allowed to change only within the minimum and maximum operating frequency specified for the particular speed grade. any frequency change below the minimum operating frequency would require the use of dll_on mode - > dll_off mode transition sequ ence; refer to section 8 .7 dll on/off switching procedure on page 2 6 . 8.8.2 frequency change during precharge power - down the second condition is when the ddr3 sdram is in precharge power - down mode (either fast exit mode or slow exit mode). if the r tt _n om feature was enabled in the mode register prior to entering precharge power down mode, the odt signal must continuously be registered low ensuring r tt is in an off state. if the r tt _n om feature was disabled in the mode register prior to entering precharge power down mode, r tt will remain in the off state. the odt signal can be registered either low or high in this case. a minimum of t cksre must occur after ck e goes low before the clock frequency may change. the ddr3 sdram input clock frequency is allowed to change only within the minimum and maximum operating frequency specified for the particular speed grade. during the input clock frequency change, odt and cke must be held at stable low levels. once the input clock frequency is changed, stable new clocks must be provided to the dram t cksrx before precharge power - down may be exited; after precharge power - down is exited and t xp has expired, the dll must be res et via mrs. depending on the new clock frequency, additional mrs commands may need to be issued to appropriately set the wr, cl, and cwl with cke continuously registered high. during dll re - lock period, odt must remain low and cke must remain high. after t he dll lock time, the dram is ready to operate with new clock frequency. this process is depicted in figure 1 2 on page 2 9 .
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 29 - note s : 1. applicable for both slow exit and fast exit precharge power - down . 2. t aofpd and t aof must be satisfied and outputs high - z prior to t1; refer to odt timing section for exact requirements . 3. if the r tt _ n om feature was enabled in the mode register prior to entering precharge power down mode, the odt signal must continuously be registered low e nsuring r tt is in an off state, as shown in figure 9 . if the r tt _n om feature was disabled in the mode register prior to entering precharge power down mode, r tt will remain in the off state. the odt signal can be registered either low or high in this case . figure 1 2 C c hange frequency during precharge power - down t i m e b r e a k d o n ' t c a r e t 0 t 1 t 2 t a 0 t b 0 t c 1 t d 0 t d 1 t e 0 t e 1 c k # c k c k e c o m m a n d n o p n o p n o p m r s n o p v a l i d o d t n o p n o p t c 0 d l l r e s e t v a l i d a d d r e s s d q s , d q s # d q d m t c h t c l t c k t i h t i s t c k s r e t c k e t c p d e d t i h t i s t c k b t c h b t c l b t c k b t c h b t c l b t c k b t c h b t c l b t x p t i h t i s h i g h - z h i g h - z t a o f p d / t a o f t d l l k e x i t p r e c h a r g e p o w e r - d o w n m o d e f r e q u e n c y c h a n g e e n t e r p r e c h a r g e p o w e r - d o w n m o d e p r e v i o u s c l o c k f r e q u e n c y n e w c l o c k f r e q u e n c y t c k s r x
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 30 - 8.9 write leveling for better signal integrity, the ddr3 memory module adopted fly - by topology for the commands, addresses, control signals, and clocks. the fly - by topology has benefits from reducing number of stubs and their length, but it also causes flight time skew between clock and strobe at every dram on the dimm. this makes it difficult for the controller to maintain t dqss , t dss , and t dsh specification. therefore, the ddr3 sdram supports a writ e leveling feature to allow the controller to compensate for skew. the memory controller can use the write leveling feature and feedback from the ddr3 sdram to adjust the dqs - dqs# to ck - ck# relationship. the memory controller involved in the levelin g must have adjustable delay setting on dqs - dqs# to align the rising edge of dqs - dqs# with that of the clock at the dram pin. the dram asynchronously feeds back ck - ck#, sampled with the rising edge of dqs - dqs#, through the dq bus. the controller re peatedly delays dqs - dqs# until a transition from 0 to 1 is detected. the dqs - dqs# delay established though this exercise would ensure t dqss specification. besides t dqss , t dss and t dsh specification also needs to be fulfilled. one way to achieve this is to combine the actual t dqss in the application with an appropriate duty cycle and jitter on the dqs - dqs# signals. depending on the actual t dqss in the application, the actual values for t dqsl and t dqsh may have to be better than the absolute limits prov ided in section 10 .1 6 ac characteristics in order to satisfy t dss and tdsh specification. a conceptual timing of this scheme is shown in figure 1 3 . figure 1 3 C write leveling concept dqs - dqs# driven by the controller during leveling mode must be terminated by the dram based on ranks populated. similarly, the dq bus driven by the dram must also be terminated at the controller. one or more data bits should carry the leveling feedback to the controller across the dram configurations x4, x8 and x16. on a x16 device, both byte lanes should be leveled independently. therefore, a separate feedback mechanism should be avail able for each byte lane. the upper data bits should provide the feedback of the upper d iff_dqs( d iff_udqs) to clock relationship whereas the lower data bits would indicate the lower d iff_dqs( d iff_ldqs) to clock relationship . c k # c k t 0 t 1 t 2 t 3 t 4 t 6 t 7 t 5 t 0 t 1 t 2 t 3 t 4 t 6 t 5 t n c k # c k d i f f _ d q s d i f f _ d q s d i f f _ d q s d q d q 0 o r 1 0 0 0 0 o r 1 1 1 1 s o u r c e d e s t i n a t i o n p u s h d q s t o c a p t u r e 0 - 1 t r a n s i t i o n
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 31 - 8.9.1 dram setting for write leveling & dram termination function in that mode dram enters into write leveling mode if a7 in mr1 set high and after finishing leveling, dram exits from write leveling mode if a7 in mr1 set low (table 3 ). note that in write leveling mode, only dqs/dqs# termi nations are activated and deactivated via odt pin, unlike normal operation (table 4 ) . table 3 C mr setting involved in the leveling procedure function mr1 enable disable write leveling enable a7 1 0 output buffer mode (qoff) a12 0 1 table 4 C dram termination function in the leveling mode odt pin @dram dqs/dqs# termination dq s termination de - asserted off off a sserted on off n ote: in write leveling mode with its output buffer disabled (mr1 a [7] = 1 with mr1 a [12] = 1) all r tt _nom settings are allowed; in write leveling mode with its output buffer enabled (mr1 a [7] = 1 with mr1 a [ 12] = 0) only r tt _nom settings of rzq/2, rzq/4 and rzq/6 are allowed . 8.9.2 write leveling procedure the memory controller initiates leveling mode of all drams by setting bit 7 of mr1 to 1. when entering write leveling mode, the dq pins are in undefined driving mode. during write leveling mode, only nop or deselect commands are allowed , as well as an mrs command to change qoff bit (mr1[a12]) and an mrs command to exit write le veling (mr1[a7]). upon exiting write leveling mode, the mrs command performing the exit (mr1[a7]=0) may also change mr1 bits of a12, a9, a6 - a5, and a2 - a1 . since the controller levels one rank at a time, the output of other ranks must be disabled by setting mr1 bit a12 to 1. the controller may assert odt after t mod , at which time the dram is ready to accept the odt signal. the controller may drive dqs low and dqs# high after a delay of t wldqsen , at which time the dram has applied on - die termination on these signals. after t dqsl and t wlmrd , the controller provides a single dqs, dqs# edge which is used by the dram to sample ck - ck# driven from controller. t wlmrd (max) timing is controller dependent. dram samples ck - ck# status with rising edge of dqs - dqs# an d provides feedback on all the dq bits asynchronously after t wlo timing. either one or all data bits ("prime dq bit(s)") provide the leveling feedback. the dram's remaining dq bits are driven low statically after the first sampling procedure. there is a dq output uncertainty of t wloe defined to allow mismatch on dq bits. the t wloe period is defined from the transition of the earliest dq bit to the corresponding transition of the latest dq bit. there are no read strobes (dqs/dqs#) needed for these dqs. contr oller samples incoming dq and decides to increment or decrement dqs - dqs# delay setting and launches the next dqs/dqs# pulse after some time, which is controller dependent. once a 0 to 1 transition is detected, the controller locks dqs - dqs# delay settin g and write leveling is achieved for the device. figure 1 4 describes the timing diagram and parameters for the overall write leveling procedure .
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 32 - note s : 1. dram has the option to drive leveling feedback on a prime dq or all dqs. if feedback is driven only on one dq, the remaining dqs must be driven low, as shown in above figure, and maintained at this state through out the leveling procedure . 2. mrs: load mr1 to enter write leveling mode . 3. nop: nop or deselect . 4. diff_dqs is the differential data strobe (dqs, dqs#). timing reference points are the ze ro crossings. dqs is shown with solid line, dqs# is shown with dotted line . 5. ck, ck# : ck is shown with solid dark line, where as ck# is drawn with dotted line. 6. dqs, dqs# needs to fulfill minimum pulse width requirements t dqsh (min) and t dqsl (min) as defined for regular writes; the max pulse width is system dependent. figure 1 4 C timing details of write leveling sequence [dqs - dqs# is capturing ck - ck# low at t1 and ck - ck# high a t t2 ] t i m e b r e a k d o n ' t c a r e c k # * 5 o d t c o m m a n d d i f f _ d q s * 4 p r i m e d q * 1 o n e p r i m e d q : l a t e r e m a i n i n g d q s e a r l y r e m a i n i n g d q s l a t e p r i m e d q s * 1 e a r l y p r i m e d q s * 1 a l l d q s a r e p r i m e : m r s * 2 n o p * 3 n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p t m o d t w l d q s e n t w l m r d t w l m r d t d q s l * 6 t d q s h * 6 t d q s l * 6 t d q s h * 6 t w l o t w l o t w l o e t w l o t w l o t w l o e t w l o t w l o e t w l o t w l o t w l o t 1 t w l s t w l h t 2 t w l s t w l h u n d e f i n e d d r i v i n g m o d e c k
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 33 - 8.9.3 write leveling mode exit the following sequence describes how the write leveling mode should be exited: 1. after the last rising strobe edge (see ~t0), stop driving the strobe signals (see ~tc0). note: from now on, dq pins are in undefined driving mod e, and will remain undefined, until t mod after the respective mr command (te1) . 2. drive odt pin low (t is must be satisfied) and continue registering low. (see tb0) . 3. after the r tt is switched off, disable write level mode via mrs command (see tc2) . 4. after t mod is satisfied (te1), any valid command may be registered. (mr commands may be issued after t mrd (td1) . note: 1. the dq result = 1 between ta0 and tc0 is a result of the dqs, dqs# signals capturing ck high just after the t0 state . figure 1 5 C timing details of write leveling exit t i m e b r e a k d o n ' t c a r e c k # c k c o m m a n d n o p n o p n o p n o p n o p n o p n o p m r s n o p v a l i d n o p v a l i d t 0 t 1 t 2 t a 0 t b 0 t c 0 t c 1 t c 2 t d 0 t d 1 t e 0 t e 1 m r 1 v a l i d v a l i d t w l o + t w l o e r e s u l t = 1 t a o f m a x t a o f m i n t i s t m o d t r a n s i t i o n i n g a d d r e s s o d t r t t _ d q s _ d q s # d q s _ d q s # r t t _ d q d q * 1 t m r d o d t l o f f r t t _ n o m u n d e f i n e d d r i v i n g m o d e
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 34 - 8.10 multi purpose register the multi purpose register (mpr) function is used to read out a predefined system timing calibration bit sequence. the basic concept of the mpr is shown in figure 1 6 . figure 1 6 C mpr block diagram to enable the mpr, a m ode register set (mrs) command must be issued to mr3 register with bit a2 = 1, as shown in table 5 . prior to issuing the mrs command, all banks must be in the idle state (all banks precharged and t rp met). once the mpr is enabled, any subsequent rd or rda commands will be redirected to the multi purpose register. the resulting operation, when a rd or rda command is issued, is defined by mr3 bits a[1:0] when the mpr is enabled as shown in table 6 . when the mpr is enabled, only rd or rda commands are allowed until a subsequent mrs command is issued with the mpr disabled (mr3 bit a2 = 0). note that in mpr mode rda has the same fun ctionality as a read command which means the auto precharge part of rda is ignored. power - down mode, self - refresh, and any other non - rd/rda command is not allowed during mpr enable mode. the reset function is supported during mpr enable mode. table 5 C mp r functional description of mr3 bits mr3 a[2] mr3 a[1:0] function mpr mpr - loc 0b don't care (0b or 1b) normal operation, no mpr transaction all subsequent reads will come from dram array all subsequent write will go to dram array 1b see table 6 enable mpr mode, subsequent rd/rda commands defined by mr3 a[1:0] m u l t i p u r p o s e r e g i s t e r p r e - d e f i n e d d a t a f o r r e a d s m r 3 [ a 2 ] d q , d m , d q s , d q s # m e m o r y c o r e ( a l l b a n k s p r e c h a r g e d )
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 35 - 8.10.1 mpr functional description ? one bit wide logical interface via all dq pins during read operation . ? register read : dql[0] and dqu[0] drive information from mpr . dql[7:1] and dqu[7:1] either drive the same information as dql[0] , or they drive 0b . ? addressing during for multi purpose register reads for all mpr agents: ba[2:0]: d on't care a[1:0]: a[1:0] must be equal to 00b. data read burst order in nibble is fixed a[2] : a[2] selects the burst order for bl=8, a[2] must be equal to 0b, burst order is fixed to [0,1,2,3,4,5,6,7], *) for burst chop 4 cases, the burst order is switched on nibble base a[2]=0b, burst order: 0,1,2,3 * ) a[2]=1b, burst order: 4,5,6,7 * ) a[9:3]: d on't care a10/ap: d on't care a1 2/bc #: selects burst chop mode on - the - fly, if enabled within mr0 a1 1 , a13 : d on't care ? regular interface functionality during register reads: support two burst ordering which are switched with a2 and a[1:0]=00b. support of read burst chop (mrs and on - the - fly via a12/bc # ) all other address bits (remaining column address bits including a10, all bank address bits) will be ignored by the ddr3 sdram. regular read latencies and ac timings apply. dll must be locked prior to mpr re ads. n ote: *) burst order bit 0 is assigned to lsb and burst order bit 7 is assigned to msb of the selected mpr agent .
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 36 - 8.10.2 mpr register address definition table 6 provides an overview of the available data locations, how they are addressed by mr3 a[1:0] during a mrs to mr3, and how their individual bits are mapped into the burst order bits during a multi purpose register read . table 6 C mpr readout s and burst order bit mapping mr3 a[2] mr3 a[1:0] function burst length read address a[2:0] burst order and data pattern 1b 00b read pre - defined pattern for system calibration bl8 000b burst order 0,1,2,3,4,5,6,7 pre - defined data pattern [0,1,0,1,0,1,0,1] bc4 000b burst order 0,1,2,3 pre - defined data pattern [0,1,0,1] bc4 100b burst order 4,5,6,7 pre - defined data pattern [0,1,0,1] 1b 01b rfu bl8 000b burst order 0,1,2,3,4,5,6,7 b c4 000b burst order 0,1,2,3 b c4 100b burst order 4,5,6,7 1b 10b rfu bl8 000b burst order 0,1,2,3,4,5,6,7 b c4 000b burst order 0,1,2,3 b c4 100b burst order 4,5,6,7 1b 11b rfu bl8 000b burst order 0,1,2,3,4,5,6,7 b c4 000b burst order 0,1,2,3 b c4 100b burst order 4,5,6,7 n ote: burst order bit 0 is assigned to lsb and the burst order bit 7 is assigned to msb of the selected mpr agent . 8.10.3 relevant timing parameters the following ac timing parameters are important for operating the multi purpose register: t rp , t mrd , t mod , and t mprr . for more details refer to section 10 .1 6 ac characteristics on page 1 3 8 . 8.10.4 protocol example protocol example (this is one example): read out pre - determined read - calibration pattern. description: multiple reads from multi purpose register, in order to do system level read timing calibration based on pre - determined and standardized pattern. protocol steps: ? precharge all. ? wait until t rp is satisfied . ? set mrs , mr3 a [ 2 ] = 1b and mr3 a [1:0] = 00b . this r edirect s all subsequent reads and load p re - defined pattern into multi purpose register . ? wait until t mrd and t mod are satisfied (multi purpose register is then ready to be read). during the period mr3 a[ 2 ] =1, no data write operation is allowed.
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 37 - ? read: a[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here) a[ 2] = 0b (for bl=8, burst order is fixed as 0,1,2,3,4,5,6,7) a12/bc # = 1 (use regular burst length of 8) all other address pins (including ba[2:0] and a10/ap): don't care ? after rl = al + cl, dram bursts out the pre - defined read calibration pattern. ? memory controller repeats these calibration reads until read data capture at memory controller is optimized. ? after end of last mpr read burst, wait until t mprr is satisfied. ? set mrs , mr3 a[ 2 ] = 0 b and mr3 a [1:0] = don't care to the normal dram state. all subsequent read and write accesses will be regular reads and writes from/to the dram array . ? wait until t mrd and t mod are satisfied . ? continue with regular dram commands, like activate a memory bank for regular read or write access,...
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 38 - figure 17 C mpr readout of pre - defined pattern, bl8 fixed burst order, single readout c k # c k c o m m a n d p r e a m r s r e a d * 1 n o p n o p n o p n o p n o p n o p n o p n o p m r s t 0 t a t b 0 t b 1 t c 0 t c 1 t c 2 t c 3 t c 4 t c 5 t c 6 t c 7 b a n o p n o p v a l i d 3 3 0 0 * 2 v a l i d 1 0 * 2 0 0 0 0 0 0 0 0 0 0 0 1 a [ 1 : 0 ] a [ 2 ] a [ 9 : 3 ] a 1 0 / a p a [ 1 1 ] a 1 2 / b c # d q s , d q s # d q r l t r p t m o d v a l i d * 1 v a l i d v a l i d v a l i d v a l i d t m p r r t m o d t c 8 t c 9 t d n o t e s : 1 . r d w i t h b l 8 e i t h e r b y m r s o r o n t h e f l y . 2 . m e m o r y c o n t r o l l e r m u s t d r i v e 0 o n a [ 2 : 0 ] . t i m e b r e a k d o n ' t c a r e
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 39 - figure 18 C mpr readout of pre - defined pattern, bl8 fixed burst order, back - to - back readout c k # c k c o m m a n d p r e a m r s r e a d * 1 n o p n o p n o p n o p n o p n o p n o p n o p t 0 t a t b 0 t c 0 t c 1 t c 2 t c 3 t c 4 t c 5 t c 6 t c 7 b a n o p m r s v a l i d 3 0 0 * 2 1 0 * 2 0 0 0 0 0 1 a [ 1 : 0 ] a [ 2 ] a [ 9 : 3 ] a 1 0 / a p a [ 1 1 ] a 1 2 / b c # d q s , d q s # d q r l v a l i d * 1 v a l i d v a l i d v a l i d v a l i d t m p r r t c 8 t c 9 t d t 1 0 3 v a l i d v a l i d 0 0 0 v a l i d 0 v a l i d 0 v a l i d 0 v a l i d * 1 r l 0 * 2 0 * 2 r e a d * 1 t i m e b r e a k d o n ' t c a r e n o t e s : 1 . r d w i t h b l 8 e i t h e r b y m r s o r o n t h e f l y . 2 . m e m o r y c o n t r o l l e r m u s t d r i v e 0 o n a [ 2 : 0 ] . t m o d t c c d t m o d t r p
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 40 - figure 19 C mpr readout pre - defined pattern, bc4, lower nibble then upper nibble t i m e b r e a k d o n ' t c a r e c k # c k c o m m a n d p r e a m r s r e a d * 1 n o p n o p n o p n o p n o p n o p n o p m r s t 0 t a t b 0 t c 0 t c 1 t c 2 t c 3 t c 4 t c 5 t c 6 t c 7 b a n o p n o p v a l i d 3 0 0 * 2 1 0 * 3 0 0 0 0 0 1 a [ 1 : 0 ] a [ 2 ] a [ 9 : 3 ] a 1 0 / a p a [ 1 1 ] a 1 2 / b c # d q s , d q s # d q r l v a l i d * 1 v a l i d v a l i d v a l i d v a l i d t m p r r t m o d t c 8 t c 9 t d t 1 0 v a l i d v a l i d v a l i d v a l i d v a l i d * 1 r l 0 * 2 1 * 4 r e a d * 1 3 v a l i d 0 0 0 0 0 0 n o t e s : 1 . r d w i t h b c 4 e i t h e r b y m r s o r o n t h e f l y . 2 . m e m o r y c o n t r o l l e r m u s t d r i v e 0 o n a [ 1 : 0 ] . 3 . a [ 2 ] = 0 s e l e c t s l o w e r 4 n i b b l e b i t s 0 . . . . 3 . 4 . a [ 2 ] = 1 s e l e c t s u p p e r 4 n i b b l e b i t s 4 . . . . 7 . t c c d t m o d t r p
w632gg6 kb publication release date: dec. 08, 2014 revision: a04 - 41 - figure 20 C mpr readout of pre - defined pattern, bc4, upper nibble then lower nibble t i m e b r e a k d o n ' t c a r e c k # c k c o m m a n d p r e a m r s r e a d * 1 n o p n o p n o p n o p n o p n o p n o p m r s t 0 t a t b 0 t c 0 t c 1 t c 2 t c 3 t c 4 t c 5 t c 6 t c 7 b a n o p n o p v a l i d 3 0 0 * 2 1 1 * 4 0 0 0 0 0 1 a [ 1 : 0 ] a [ 2 ] a [ 9 : 3 ] a 1 0 / a p a [ 1 1 ] a 1 2 / b c # d q s , d q s # d q r l v a l i d * 1 v a l i d v a l i d v a l i d v a l i d t m p r r t m o d t c 8 t c 9 t d t 1 0 v a l i d v a l i d v a l i d v a l i d v a l i d * 1 r l 0 * 2 0 * 3 r e a d * 1 3 v a l i d 0 0 0 0 0 0 n o t e s : 1 . r d w i t h b c 4 e i t h e r b y m r s o r o n t h e f l y . 2 . m e m o r y c o n t r o l l e r m u s t d r i v e 0 o n a [ 1 : 0 ] . 3 . a [ 2 ] = 0 s e l e c t s l o w e r 4 n i b b l e b i t s 0 . . . . 3 . 4 . a [ 2 ] = 1 s e l e c t s u p p e r 4 n i b b l e b i t s 4 . . . . 7 . t c c d t m o d t r p
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 42 - 8.11 active command the active command is used to open (or activate) a row in a particular bank for a subsequent access. the value on the ba0 - ba2 inputs selects the bank, and the address provided on inputs a0 - a13 selects the row. this row remains active (or open) for accesses until a precharge command is issued to that bank. a precharge command must be issued before opening a different row in the same bank . 8.12 precharge command the precharge command is used to deactivate the open row in a particular bank or the open row in all banks. the bank(s) will be available for a subsequent row activation a specified time (t rp ) after the precharge command is issued, except in the case of concurrent auto precharge, where a read or write command to a different bank is allowed as long as it does not interrupt the data transfer in the current bank and does not violate any other timing parameters. once a bank has been precharged, it is in the idle state and must be activated prior to any read or write com mands being issued to that bank. a precharge command is allowed if there is no open row in that bank (idle state) or if the previously open row is already in the process of precharging. however, the precharge period will be determined by the last precharge command issued to the bank .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 43 - 8.13 read operation 8.13.1 read burst operation during a read or write command, ddr3 will support bc4 and bl8 on the fly using address a12 during the read or write (auto precharge can be enabled or disabled). a12 = 0, bc4 (bc4 = burst ch op, t ccd = 4) a12 = 1, bl8 a12 is used only for burst length control, not as a column address . note s : 1. bl8, rl = 6 , al = 0, cl = 6 . 2. d out n = data - out from column n . 3. nop commands are shown for ease of illustration; other commands may be valid at these times . 4. bl8 setting activated by either mr0 a [1:0 ] = 00 or mr0 a [1:0 ] = 01 and a12 = 1 during read command at t0. figure 21 C read burst operation rl = 6 (al = 0, cl = 6 , bl8) note s : 1. bl8, rl = 11 , al = (cl - 1), cl = 6 . 2. d out n = data - out from column n . 3. nop commands are shown for ease of illustration; other commands may be valid at these times . 4. bl8 setting activated by either mr0 a [1:0 ] = 00 or mr0 a [1:0 ] = 0 1 and a12 = 1 during read command at t0. figure 22 C read burst operation rl = 11 (al = 5 , cl = 6 , bl8) t r a n s i t i o n i n g d a t a t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p n o p n o p n o p b a n k c o l n d o n ' t c a r e d q s , d q s # d q * 2 c l = 6 d o u t n d o u t n + 1 r l = a l + c l t r p r e d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 t r p s t n o p n o p n o p t r a n s i t i o n i n g d a t a t 0 t 1 t 5 t 6 t 1 0 t 1 1 t 1 2 t 1 3 t 1 4 t 1 5 t 1 6 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p n o p n o p n o p b a n k c o l n d o n ' t c a r e d q s , d q s # d q * 2 c l = 6 d o u t n d o u t n + 1 r l = a l + c l t r p r e d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 t r p s t n o p n o p n o p a l = 5 t i m e b r e a k
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 44 - 8.13.2 read timing definitions read timing is shown in figure 2 3 and is applied when the dll is enabled and locked. rising data strobe edge parameters: ? t dqsck min/max describes the allowed range for a rising data strobe edge relative to ck, ck#. ? t dqsck is the actual position of a rising strobe edge relative to ck, ck#. ? t qsh describes the dqs, dqs# differential output high time. ? t dqsq describes the latest valid transition of the associated dq pins. ? t qh describes the earliest invalid trans ition of the associated dq pins . falling data strobe edge parameters : ? t qsl describes the dqs, dqs# differential output low time. ? t dqsq describes the latest valid transition of the associated dq pins. ? t qh describes the earliest invalid transition of the associated dq pins. t dqsq ; both rising/falling edges of dqs, no t ac defined. figure 23 C r ead timing definition c k # c k d q s # d q s t q s h t q s l t d q s c k t d q s c k t d q s c k ( m i n ) t d q s c k ( m a x ) t d q s c k ( m i n ) t d q s c k ( m a x ) r i s i n g s t r o b e r e g i o n t q h t q h t d q s q a s s o c i a t e d d q p i n s t d q s q r i s i n g s t r o b e r e g i o n
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 45 - 8.13.2.1 read timing; clock to data strobe relationshi p clock to data strobe relationship is shown in figure 2 4 and is applied when the dll is enabled and locked. rising data strobe edge parameters: ? t dqsck min/max describes the allowed range for a rising data strobe edge relative to ck, ck#. ? t dqsck is the actual position of a risin g strobe edge relative to ck, ck#. ? t qsh describes the data strobe high pulse width. falling data strobe edge parameters : ? t qsl describes the data strobe low pulse width . t lz(dqs) , t hz(dqs) for preamble/postamble (see section 8.13.2.3 and figure 26 ). note s : 1. within a burst, rising strobe edge is not necessarily fixed to be always at t dqsck (min) or t dqsck (max). instead, rising strobe edge can vary between t dqsck (min) and t dqsck (max). 2. not with standing note 1, a rising strobe edge with t dqsck (max) at t(n) can not be immediately followed by a rising strobe edge with t dqsck (min) at t(n+1). this is because other timing relationships (t qsh , t qsl ) exist: if t dqsck (n+1) < 0: t dqsck (n) < 1.0 t ck - (t qsh min + t qsl min) - | t dqsck (n+1) | 3. the dqs, dqs# differential output high time is defined by t qsh and the dqs, dqs# differential output low time is defined by t qsl . 4. likewise, t lz(dqs) min and t hz(dqs) min are not tied to t dqsck , min (early strobe case) and t lz(dqs) max and t hz(dqs) max are not tied to t dqsck , max (late strobe case). 5. the minimum pulse width of read preamble is defined by t rpre (min). 6. the maximum read postamble is bound by t dqsck (min) plus t qsh (min) on the left side and t hzdsq (max) on the right side. 7. the minimum pulse width of read postamble is defined by t rpst (min). 8. the maximum read preamble is bound by t lzdqs (min) on the left side and t dqsck (max) on the right side . figure 24 C clock to data st robe relationship c k / c k # t r p r e t l z ( d q s ) m i n t d q s c k ( m i n ) t d q s c k ( m i n ) t d q s c k ( m i n ) t d q s c k ( m i n ) t h z ( d q s ) m i n t q s h t q s l t q s h t q s l t q s h t q s l t q s h t q s l t q s h t q s l t q s h t q s l t r p s t t d q s c k ( m a x ) t d q s c k ( m a x ) t d q s c k ( m a x ) t d q s c k ( m a x ) b i t 0 b i t 1 b i t 2 b i t 3 b i t 4 b i t 5 b i t 6 b i t 7 b i t 0 b i t 1 b i t 2 b i t 3 b i t 4 b i t 5 b i t 6 b i t 7 t l z ( d q s ) m a x t h z ( d q s ) m a x d q s , d q s # e r l y s t r o b e d q s , d q s # l a t e s t r o b e t r p r e r l m e a s u r e d t o t h i s p o i n t t r p s t
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 46 - 8.13.2.2 read timing; data strobe to data relationship the data strobe to data relationship is shown in figure 2 5 and is applied when the dll is enabled and locked. rising data strobe edge parameters: ? t dqsq describes the latest valid transition of the associated dq pins. ? t qh describes the earliest invalid transition of the associated dq pins. falling data strobe edge parameters : ? t dqsq describes the latest valid transition of the associated dq pins. ? t qh describes the earliest invalid transition of the associated dq pins. t dqsq ; both rising/falling edges of dqs, no t ac defined . note s : 1. bl = 8, rl = 6 (al = 0, cl = 6 ) . 2. d out n = data - out from column n. 3. nop commands are shown for ease of illustration; other commands may be valid at these times. 4. bl8 setting activated by either mr0 a [1:0 ] = 00 or mr0 a [1:0 ] = 0 1 and a12 = 1 during read command at t0. 5. output timings are referenced to v ddq /2, and dll on for locking. 6. t dqsq defines the skew between dqs, dqs# to data and do es not define dqs, dqs# to clock . 7. early data transitions may not always happen at the same dq. data transitions of a dq can vary (either early or late) within a burst . figure 25 C d ata strobe to data relati onship t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p n o p n o p n o p b a n k c o l n d q s , d q s # d q * 2 ( l a s t d a t a v a l i d ) d o u t n t r p r e t r p s t n o p n o p n o p r l = a l + c l d o u t n d o u t n + 1 d o u t n + 2 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 d o u t n + 1 d o u t n + 2 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 d o u t n + 1 d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 t q h t d q s q ( m a x ) t d q s q ( m a x ) t q h d q * 2 ( f i r s t d a t a n o l o n g e r v a l i d ) a l l d q s c o l l e c t i v e l y t r a n s i t i o n i n g d a t a d o n ' t c a r e d o u t n d o u t n + 3 d o u t n + 3
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 47 - 8.13.2.3 t lz(dqs) , t lz(dq) , t hz(dqs) , t hz(dq) calculation t hz and t lz transitions occur in the same time window as valid data transitions. these parameters are referenced to a specific voltage level that specifies when the device output is no longer driving t hz(dqs) and t hz(dq) , or begins driving t lz(dqs) , t lz(dq) . figure 26 shows a method to calculate the point when the device is no longer driving t hz(dqs) and t hz(dq) , or begins driving t lz(dqs) , t lz(dq) , by measuring the signal at two different volt ages. the actual voltage measurement points are not critical as long as the calculation is consistent. the parameters t lz(dqs) , t lz(dq) , t hz(dqs) , and t hz(dq) are defined as singled ended. figure 26 C t lz and t hz method for calculating transitions and endpoints v t t + 2 x m v v t t + x m v v t t - x m v v t t - 2 x m v t 1 t 2 t l z c k c k # t l z ( d q s ) , t l z ( d q ) t l z ( d q s ) : c k C c k # r i s i n g c r o s s i n g a t r l - 1 t l z ( d q ) : c k C c k # r i s i n g c r o s s i n g a t r l t h z c k c k # t h z ( d q s ) , t h z ( d q ) w i t h b l 8 : c k C c k # r i s i n g c r o s s i n g a t r l + 4 n c k t h z ( d q s ) , t h z ( d q ) w i t h b c 4 : c k C c k # r i s i n g c r o s s i n g a t r l + 2 n c k v o h - x m v v o h - 2 x m v t 2 t 1 t h z ( d q s ) , t h z ( d q ) v o l + 2 x m v v o l + x m v t h z ( d q s ) , t h z ( d q ) e n d p o i n t = 2 * t 1 - t 2 t l z ( d q s ) , t l z ( d q ) b e g i n p o i n t = 2 * t 1 - t 2
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 48 - 8.13.2.4 t rpre calculation the method for calculating differential pulse widths for t rpre is shown in figure 27 . figure 2 7 C method for calculating t rpre transitions and endpoints 8.13.2.5 t rp st calculation the method for calculating differential pulse widths for t rp st is shown in figure 2 8 . figure 28 C method for calculating t rpst transitions and endpoints c k c k # s i n g l e e n d e d s i g n a l , p r o v i d e d a s b a c k g r o u n d i n f o r m a t i o n d q s d q s # s i n g l e e n d e d s i g n a l , p r o v i d e d a s b a c k g r o u n d i n f o r m a t i o n d q s - d q s # r e s u l t i n g d i f f e r e n t i a l s i g n a l , r e l e v a n t f o r t r p r e s p e c i f i c a t i o n t a t b t c t d t 2 t 1 t r p r e t r p r e _ e n d t r p r e _ b e g i n v t t 0 v t t v t t c k c k # s i n g l e e n d e d s i g n a l , p r o v i d e d a s b a c k g r o u n d i n f o r m a t i o n d q s d q s # s i n g l e e n d e d s i g n a l , p r o v i d e d a s b a c k g r o u n d i n f o r m a t i o n d q s - d q s # r e s u l t i n g d i f f e r e n t i a l s i g n a l , r e l e v a n t f o r t r p s t s p e c i f i c a t i o n v t t t a t b t d t c t 1 t r p s t t r p s t _ b e g i n t 2 t r p s t _ e n d v t t v t t 0
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 49 - figure 29 C read (bl8) to read (bl8) figure 3 0 C nonconsecutive read (bl8) to read (bl8), t ccd =5 t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p r e a d n o p b a n k c o l n d q s , d q s # d q * 2 r l = 6 d o u t n d o u t n + 1 r l = 6 t r p r e d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 t r p s t n o p n o p n o p t 1 1 t 1 2 t 1 3 t 1 4 n o p b a n k c o l b n o p n o p n o p n o p d o u t b d o u t b + 1 d o u t b + 2 d o u t b + 3 d o u t b + 4 d o u t b + 5 d o u t b + 6 d o u t b + 7 t c c d t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . b l 8 , r l = 6 ( c l = 6 , a l = 0 ) . 2 . d o u t n ( o r b ) = d a t a - o u t f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b l 8 s e t t i n g a c t i v a t e d b y e i t h e r m r 0 a [ 1 : 0 ] = 0 0 o r m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g r e a d c o m m a n d s a t t 0 a n d t 4 . t 0 t 1 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 t 1 1 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p r e a d n o p b a n k c o l n d q s , d q s # * 5 d q * 2 r l = 6 r l = 6 t r p r e t r p s t n o p n o p n o p t 1 2 t 1 3 t 1 4 t 1 5 n o p b a n k c o l b n o p n o p n o p n o p t c c d = 5 t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . b l 8 , r l = 6 ( c l = 6 , a l = 0 ) , t c c d = 5 . 2 . d o u t n ( o r b ) = d a t a - o u t f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b l 8 s e t t i n g a c t i v a t e d b y e i t h e r m r 0 a [ 1 : 0 ] = 0 0 o r m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g r e a d c o m m a n d s a t t 0 a n d t 5 . 5 . d q s - d q s # i s h e l d l o g i c l o w a t t 1 0 . d o u t n d o u t n + 1 d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 d o u t b d o u t b + 1 d o u t b + 2 d o u t b + 3 d o u t b + 4 d o u t b + 5 d o u t b + 6 d o u t b + 7 t i m e b r e a k
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 50 - figure 3 1 C read (b c4 ) to read (b c4 ) figure 3 2 C read (bl8) to write (bl8) t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p r e a d n o p b a n k c o l n d q s , d q s # d q * 2 r l = 6 d o u t n d o u t n + 1 r l = 6 t r p r e d o u t n + 2 d o u t n + 3 t r p s t n o p n o p n o p t 1 1 t 1 2 t 1 3 t 1 4 n o p b a n k c o l b n o p n o p n o p n o p t r p r e d o u t b d o u t b + 1 d o u t b + 2 d o u t b + 3 t r p s t t c c d t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . b c 4 , r l = 6 ( c l = 6 , a l = 0 ) 2 . d o u t n ( o r b ) = d a t a - o u t f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 s e t t i n g a c t i v a t e d b y e i t h e r m r 0 a [ 1 : 0 ] = 1 0 o r m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g r e a d c o m m a n d s a t t 0 a n d t 4 . t 0 t 1 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 t 1 1 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p n o p b a n k c o l n d q s , d q s # d q * 2 r l = 6 d o u t n d o u t n + 1 w l = 5 t r p r e d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 t w p s t n o p n o p w r i t e t 1 2 t 1 3 t 1 4 t 1 5 b a n k c o l b n o p n o p n o p n o p d i n b d i n b + 1 d i n b + 2 d i n b + 3 d i n b + 4 d i n b + 5 d i n b + 6 d i n b + 7 t 1 6 n o p n o p n o p t r p s t t w p r e 4 c l o c k s t w r t w t r t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . b l 8 , r l = 6 ( c l = 6 , a l = 0 ) , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d o u t n = d a t a - o u t f r o m c o l u m n , d i n b = d a t a - i n f r o m c o l u m n b . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b l 8 s e t t i n g a c t i v a t e d b y e i t h e r m r 0 a [ 1 : 0 ] = 0 0 o r m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g r e a d c o m m a n d a t t 0 a n d w r i t e c o m m a n d a t t 7 . r e a d t o w r i t e c o m m a n d d e l a y = r l + t c c d + 2 t c k - w l t i m e b r e a k
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 51 - figure 3 3 C read (b c4 ) to write (b c4 ) otf figure 3 4 C read (bl8) to read (b c4 ) otf t 0 t 1 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 t 1 1 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p w r i t e n o p d q s , d q s # d q * 2 r l = 6 d o u t n d o u t n + 1 w l = 5 t r p r e d o u t n + 2 d o u t n + 3 t w p s t n o p n o p n o p t 1 2 t 1 3 t 1 4 t 1 5 n o p n o p n o p n o p d i n b d i n b + 1 d i n b + 2 d i n b + 3 t 1 6 n o p n o p n o p t r p s t t w p r e 4 c l o c k s t w r t w t r t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . b c 4 , r l = 6 ( c l = 6 , a l = 0 ) , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d o u t n = d a t a - o u t f r o m c o l u m n , d i n b = d a t a - i n f r o m c o l u m n b . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g r e a d c o m m a n d a t t 0 a n d w r i t e c o m m a n d a t t 5 . b a n k c o l n b a n k c o l b r e a d t o w r i t e c o m m a n d d e l a y = r l + t c c d / 2 + 2 t c k - w l t i m e b r e a k t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p r e a d n o p b a n k c o l n d q s , d q s # d q * 2 r l = 6 d o u t n d o u t n + 1 r l = 6 t r p r e d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 t r p s t n o p n o p n o p t 1 1 t 1 2 t 1 3 t 1 4 n o p b a n k c o l b n o p n o p n o p n o p d o u t b d o u t b + 1 d o u t b + 2 d o u t b + 3 t c c d t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . r l = 6 ( c l = 6 , a l = 0 ) . 2 . d o u t n ( o r b ) = d a t a - o u t f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b l 8 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g r e a d c o m m a n d a t t 0 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g r e a d c o m m a n d a t t 4 .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 52 - figure 3 5 C read (b c4 ) to read (b l8 ) otf figure 3 6 C read (b c4 ) to write (bl8) otf r l = 6 d o u t n d o u t n + 1 r l = 6 t r p r e d o u t n + 2 d o u t n + 3 t r p s t t r p r e d o u t b d o u t b + 1 d o u t b + 2 d o u t b + 7 t r p s t d o u t b + 3 d o u t b + 4 d o u t b + 5 d o u t b + 6 t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p n o p r e a d n o p b a n k c o l n d q s , d q s # d q * 2 n o p n o p n o p t 1 1 t 1 2 t 1 3 t 1 4 n o p b a n k c o l b n o p n o p n o p n o p t c c d t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . r l = 6 ( c l = 6 , a l = 0 ) 2 . d o u t n ( o r b ) = d a t a - o u t f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g r e a d c o m m a n d a t t 0 . b l 8 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g r e a d c o m m a n d a t t 4 . t 0 t 1 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 t 1 1 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p w r i t e n o p d q s , d q s # d q * 2 r l = 6 d o u t n d o u t n + 1 w l = 5 t r p r e d o u t n + 2 d o u t n + 3 t w p s t n o p n o p n o p t 1 2 t 1 3 t 1 4 t 1 5 n o p n o p n o p n o p d i n b d i n b + 1 d i n b + 6 d i n b + 7 t 1 6 n o p n o p n o p t r p s t t w p r e 4 c l o c k s t w r t w t r t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . r l = 6 ( c l = 6 , a l = 0 ) , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d o u t n = d a t a - o u t f r o m c o l u m n , d i n b = d a t a - i n f r o m c o l u m n b . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g r e a d c o m m a n d a t t 0 . b l 8 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g w r i t e c o m m a n d a t t 5 . b a n k c o l n b a n k c o l b d i n b + 2 d i n b + 3 d i n b + 4 d i n b + 5 t i m e b r e a k r e a d t o w r i t e c o m m a n d d e l a y = r l + t c c d / 2 + 2 t c k - w l
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 53 - figure 3 7 C read (b l8 ) to write (b c4 ) otf t 0 t 1 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 t 1 1 c k # c k c o m m a n d * 3 r e a d a d d r e s s * 4 n o p n o p n o p r e a d n o p b a n k c o l n d q s , d q s # d q * 2 r l = 6 d o u t n d o u t n + 1 w l = 5 t r p r e d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 t w p s t n o p n o p w r i t e t 1 2 t 1 3 t 1 4 t 1 5 b a n k c o l b n o p n o p n o p n o p d i n b d i n b + 1 d i n b + 2 d i n b + 7 t 1 6 n o p n o p n o p t r p s t t w p r e 4 c l o c k s t w r t w t r t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . r l = 6 ( c l = 6 , a l = 0 ) , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d o u t n = d a t a - o u t f r o m c o l u m n , d i n b = d a t a - i n f r o m c o l u m n b . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b l 8 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g r e a d c o m m a n d a t t 0 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g w r i t e c o m m a n d a t t 7 . r e a d t o w r i t e c o m m a n d d e l a y = r l + t c c d + 2 t c k - w l t i m e b r e a k
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 54 - 8.13.2.6 burst read operation followed by a precharge the minimum external read command to precharge command spacing to the same bank is equal to al + t rtp with t rtp being the internal read command to precharge command delay. note that the minimum act to pre timing, t ras.min must be satisfied as well. the min imum value for the internal read command to precharge command delay is given by t rtp.min = max(4 n ck , 7.5 n s ). a new bank active command may be issued to the same bank if the following two conditions are satisfied simultaneously: 1. the minimum ras precharge time (t rp .min ) has been satisfied from the clock at which the precharge begins . 2. the minimum ras cycle time (t rc .min ) from the previous bank activation has been satisfied . examples of read commands followed by precharge are show in figure 3 8 and figure 3 9 . figure 3 8 C r ead to precharge ( rl = 9 , al = 0, cl = 9 , t rtp = 4, t rp = 9 ) t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d n o p a d d r e s s r e a d n o p a c t p r e n o p n o p b a n k a , c o l n d q s , d q s # d q n o p n o p n o p t 1 1 t 1 2 t 1 3 t 1 4 n o p b a n k a , ( o r a l l ) n o p n o p n o p n o p d o u t n d o u t n + 1 d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 t r t p d o u t n d o u t n + 1 d o u t n + 2 d o u t n + 3 d q s , d q s # d q b l 4 o p e r a t i o n : b l 8 o p e r a t i o n : t r p r l = a l + c l = 9 t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . r l = 9 ( c l = 9 , a l = 0 ) 2 . d o u t n = d a t a - o u t f r o m c o l u m n n . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . t h e e x a m p l e a s s u m e s t r a s . m i n i s s a t i s f i e d a t p r e c h a r g e c o m m a n d t i m e ( t 5 ) a n d t h a t t r c . m i n i s s a t i s f i e d a t t h e n e x t a c t i v e c o m m a n d t i m e ( t 1 4 ) . b a n k a , r o w b t 1 5 n o p
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 55 - figure 3 9 C read to precharge ( rl = 20 , al = cl - 2, cl = 1 1 , t rtp = 6, t rp = 1 1 ) t 0 t 1 t 2 t 1 0 t 1 1 t 1 6 t 1 8 t 1 9 t 2 0 t 2 1 t 2 2 c k # c k c o m m a n d n o p a d d r e s s r e a d n o p a c t p r e n o p n o p b a n k a , c o l n d q s , d q s # d q n o p n o p n o p t 2 3 t 2 4 t 2 5 t 2 7 n o p b a n k a , ( o r a l l ) n o p n o p n o p n o p d o u t n d o u t n + 1 d o u t n + 2 d o u t n + 3 d o u t n + 4 d o u t n + 5 d o u t n + 6 d o u t n + 7 c l = 1 1 d o u t n d o u t n + 1 d o u t n + 2 d o u t n + 3 d q s , d q s # d q b l 4 o p e r a t i o n : b l 8 o p e r a t i o n : t r p a l = c l - 2 = 9 t 2 6 n o p t r t p b a n k a , r o w b t r a n s i t i o n i n g d a t a d o n ' t c a r e n o t e s : 1 . r l = 2 0 ( c l = 1 1 , a l = c l - 2 ) 2 . d o u t n = d a t a - o u t f r o m c o l u m n n . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . t h e e x a m p l e a s s u m e s t r a s . m i n i s s a t i s f i e d a t p r e c h a r g e c o m m a n d t i m e ( t 1 6 ) a n d t h a t t r c . m i n i s s a t i s f i e d a t t h e n e x t a c t i v e c o m m a n d t i m e ( t 2 7 ) . t i m e b r e a k r l = 2 0
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 56 - 8.14 write operation 8.14.1 ddr3 burst operation during a read or write command, ddr3 will support bc4 and bl8 on the fly using address a12 during the read or write (auto precharge can be enabled or disabled). a12 = 0, bc4 (bc4 = burst chop , t ccd = 4) a12 = 1, bl8 a12 is used only for burst length control, not as a column address . 8.14.2 write timing violations 8.14.2.1 motivation generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure that th e dram works properly. however, it is desirable; for certain minor violations, that the dram is guaranteed not to hang up , and that errors are limited to that particular operation. for the following, it will be assumed that there are no timing violations with regards to the write command itself (including odt, etc.) and that it does satisfy all timing requirements not mentioned below. 8.14.2.2 data setup and hold violations should the data to strobe timing requirements (t ds , t dh ) be violated, for any of the strobe edges associated with a write burst, and then wrong data might be written to the memory location addressed with this write command. in the example (figure 40 on page 5 7 ), the relevant strobe edges for write burst a are associated with the clock edges: t5, t5.5, t6, t6.5, t7, t7.5, t8, t8.5. subsequent reads from that location might result in unpredictable read data, however the dram will work properly otherwise. 8.14.2.3 strobe to strobe and strobe to clock violations should the strobe timing requirements (t dqsh , t dqsl , t wpre , t wpst ) or the strobe to clock timing requirements (t dss , t dsh , t dqss ) be violated, for any of the strobe edges associated with a write burst, then wrong data might be written to the memory location addressed with the offending write command. s ubsequent reads from that location might result in unpredictable read data, however the dram will work properly otherwise. in the example (figure 4 8 on page 6 1 ) the relevant strobe edges for write burst n are associated with the clock edges: t4, t4.5, t5, t5.5, t6, t6.5, t7, t7.5, t8, t8.5 and t9. any timing requirements starting or ending on one of these strobe edges need to be fulfilled for a valid burst. for write burst b the relevant edges are t8, t8.5, t9, t9.5, t10, t10.5, t11, t11.5, t12, t12.5 and t 13. some edges are associated withboth bursts. 8.14.2.4 write timing parameters this drawing is for example only to enumerate the strobe edges that belong to a write burst. no actual timing violations are shown here. for a valid burst all timing parameters for ea ch edge of a burst need to be satisfied (not only for one edge - as shown).
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 57 - note s : 1. bl8, wl = 5 (al = 0, cwl = 5) 2. d in n = data - in from column n. 3. nop commands are shown for ease of illustration; other commands may be valid at these times. 4. bl8 setting activated by either mr0 a [1:0 ] = 00 or mr0 a [1:0 ] = 0 1 and a12 = 1 during write command at t0. 5. t dqss must be met at each rising clock edge. figure 40 C write timing definition and parameters 8.14.3 write data mask one write data mask (dm) pin for each 8 data bits (dq) will be supported on ddr3 sdrams, consistent with the implementation on ddr2 sdrams. it has identical timings on write operations as the data bits as shown in figure 40 , and though used in a unidirectional manner, is inte rnally loaded identically to data bits to ensure matched system timing. dm is not used during read cycles . t r a n s i t i o n i n g d a t a t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 a d d r e s s * 4 d o n ' t c a r e d q s , d q s # d q * 2 d i n n d i n n + 2 d i n n + 3 d i n n + 4 d i n n + 6 d i n n + 7 t d q s s ( m i n ) b a n k c o l n w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p w l = a l + c w l d i n n d i n n + 2 d i n n + 3 d i n n + 4 d i n n + 6 d i n n + 7 d i n n d i n n + 2 d i n n + 3 d i n n + 4 d i n n + 6 d i n n + 7 d m d q s , d q s # d q * 2 d m d q s , d q s # d q d m t d q s s ( n o m i n a l ) t w p r e ( m i n ) t d q s s t d s h t d s h t d s h t d s h t w p s t ( m i n ) t d q s l t d q s h t d q s h ( m i n ) t d q s l t d q s h t d q s l t d q s h t d q s l t d q s h t d q s l ( m i n ) t d s s t d s s t d s s t d s s t d s s t w p r e ( m i n ) t d q s h ( m i n ) t d s h t d s h t d s h t d s h t w p s t ( m i n ) t d q s l t d q s h t d q s l t d q s h t d q s l t d q s h t d q s l t d q s h t d q s l ( m i n ) t d s s t d s s t d s s t d s s t d s s t w p r e ( m i n ) t d s h t d q s s t d s h t d s h t d s h t w p s t ( m i n ) t d q s h ( m i n ) t d s s t d s s t d s s t d s s t d s s t d q s l t d q s h t d q s l t d q s h t d q s l t d q s h t d q s l t d q s h t d q s l ( m i n ) t d q s s ( m a x )
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 58 - 8.14.4 t wpre calculation the method for calculating differential pulse widths for t wpre is shown in figure 4 1 . figure 4 1 C method for calculating t wpre transitions and endpoints 8.14.5 t wp st calculation the method for calculating differential pulse widths for t w p st is shown in figure 4 2 . figure 4 2 C method for calculating t wp st transitions and endpoints c k c k # d q s - d q s # r e s u l t i n g d i f f e r e n t i a l s i g n a l , r e l e v a n t f o r t w p r e s p e c i f i c a t i o n v t t 0 v t 1 t w p r e t w p r e _ b e g i n t 2 t w p r e _ e n d c k c k # d q s - d q s # r e s u l t i n g d i f f e r e n t i a l s i g n a l , r e l e v a n t f o r t w p s t s p e c i f i c a t i o n t 1 t w p s t t w p s t _ b e g i n t 2 t w p s t _ e n d 0 v v t t
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 59 - note s : 1. bl8, wl = 5; al = 0, cwl = 5. 2. d in n = data - in from column n. 3. nop commands are shown for ease of illustration; other commands may be valid at these times. 4. bl8 setting activated by either mr0 a [1:0 ] = 00 or mr0 a [1:0 ] = 0 1 and a12 = 1 during write command at t0 . figure 4 3 C write burst operation w l = 5 (al = 0, c w l = 5, bl8) note s : 1. bl8, wl = 10 ; al = cl - 1 , cl = 6 , cwl = 5. 2. d in n = data - in from column n. 3. nop commands are shown for ease of illustration; other commands may be valid at these times. 4. bl8 setting activated by either mr0 a [1:0 ] = 00 or mr0 a [1:0 ] = 0 1 and a12 = 1 during write command at t0 . figure 4 4 C write burst operation w l = 10 (al = cl - 1 , c w l = 5, bl8) t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 d i n n d i n n + 2 d i n n + 3 d i n n + 4 d i n n + 6 d i n n + 7 b a n k c o l n w r i t e n o p n o p n o p n o p t w p r e d i n n + 1 d i n n + 5 t w p s t n o p n o p n o p n o p n o p n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e w l = a l + c w l t 0 t 1 t 5 t 6 t 9 t 1 0 t 1 1 t 1 2 t 1 3 t 1 4 t 1 5 c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 d i n n d i n n + 2 d i n n + 3 d i n n + 4 d i n n + 6 d i n n + 7 b a n k c o l n w r i t e n o p n o p n o p n o p a l = 5 t w p r e d i n n + 1 d i n n + 5 t w p s t n o p n o p n o p n o p n o p n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e c w l = 5 w l = a l + c w l t i m e b r e a k
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 60 - note s : 1. bc4, wl = 5, rl = 6 . 2. d in n = data - in from column n; d out b = data - out from column b. 3. nop commands are shown for ease of illustration; other commands may be valid at these times. 4. bc4 setting activated by mr0 a [1:0 ] = 1 0 during write command at t0 and read command at tn. 5. t wtr controls the write to read delay to the same device and starts with the first rising clock edge after the last write data shown at t7 . figure 4 5 C write (bc4) to read (bc4) operation note s : 1. bc4, wl = 5, rl = 6 . 2. d in n = data - in from column n; d out b = data - out from column b. 3. nop commands are shown for ease of illustration; other commands may be valid at these times. 4. bc4 setting activated by mr0 a [1:0 ] = 1 0 during write command at t0. 5. the write recovery time (t wr ) referenced from the first rising clock edge after the last write data shown at t7. t wr specifies the last burst write cycle until the precharge command can be issued to the same bank . figure 4 6 C write (bc4) to precharge operation t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t n c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 d i n n d i n n + 2 d i n n + 3 b a n k c o l n w r i t e n o p n o p n o p n o p n o p n o p n o p r e a d w l = 5 t w p r e d i n n + 1 t w p s t n o p n o p t w t r * 5 b a n k c o l b r l = 6 t i m e b r e a k t r a n s i t i o n i n g d a t a d o n ' t c a r e t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t n c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 d i n n d i n n + 2 d i n n + 3 b a n k c o l n w r i t e n o p n o p n o p n o p n o p n o p n o p p r e w l = 5 t w p r e d i n n + 1 t w p s t n o p n o p t w r * 5 t i m e b r e a k t r a n s i t i o n i n g d a t a d o n ' t c a r e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 61 - figure 4 7 C write (bc4) otf to precharge operation figure 4 8 C write (bl8) to write (bl8) t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 d i n n d i n n + 2 d i n n + 3 b a n k c o l n w l = 5 t w p r e d i n n + 1 t w p s t 4 c l o c k s v a l i d t a 0 t 1 1 t a 1 t 1 4 t w r * 5 n o t e s : 1 . b c 4 o n t h e f l y , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d i n n ( o r b ) = d a t a - i n f r o m c o l u m n n . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 o n t h e f l y s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g w r i t e c o m m a n d a t t 0 . 5 . t h e w r i t e r e c o v e r y t i m e ( t w r ) s t a r t s a t t h e r i s i n g c l o c k e d g e t 9 ( 4 c l o c k s f r o m t 5 ) . w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p p r e t r a n s i t i o n i n g d a t a d o n ' t c a r e t i m e b r e a k t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 d i n n d i n n + 2 d i n n + 3 b a n k c o l n w l = 5 t w p r e d i n n + 1 t w p s t 4 c l o c k s b a n k c o l b t 1 2 t 1 1 t 1 3 t 1 4 t w r t w t r w l = 5 t c c d d i n n + 5 d i n n + 6 d i n n + 4 d i n b d i n b + 1 d i n n + 7 d i n b + 3 d i n b + 4 d i n b + 2 d i n b + 6 d i n b + 7 d i n b + 5 n o t e s : 1 . b l 8 , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d i n n ( o r b ) = d a t a - i n f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b l 8 s e t t i n g a c t i v a t e d b y e i t h e r m r 0 a [ 1 : 0 ] = 0 0 o r m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g w r i t e c o m m a n d a t t 0 a n d t 4 . 5 . t h e w r i t e r e c o v e r y t i m e ( t w r ) a n d w r i t e t i m i n g p a r a m e t e r ( t w t r ) a r e r e f e r e n c e d f r o m t h e f i r s t r i s i n g c l o c k e d g e a f t e r t h e l a s t w r i t e d a t a s h o w n a t t 1 3 . w r i t e n o p n o p n o p n o p w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 62 - figure 4 9 C write (bc4) to write (bc4) otf figure 50 C write (bl8) to read (bc4/bl8) otf d i n n d i n n + 2 d i n n + 3 w l = 5 t w p r e d i n n + 1 t w p s t w l = 5 d i n b d i n b + 1 d i n b + 3 d i n b + 2 t w p r e t w p s t t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 4 c l o c k s t 1 2 t 1 1 t 1 3 t 1 4 t w r t w t r t c c d n o t e s : 1 . b c 4 , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d i n n ( o r b ) = d a t a - i n f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g w r i t e c o m m a n d a t t 0 a n d t 4 . 5 . t h e w r i t e r e c o v e r y t i m e ( t w r ) a n d w r i t e t i m i n g p a r a m e t e r ( t w t r ) a r e r e f e r e n c e d f r o m t h e f i r s t r i s i n g c l o c k e d g e a t t 1 3 ( 4 c l o c k s f r o m t 9 ) . c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 w r i t e n o p n o p n o p n o p w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e b a n k c o l b b a n k c o l n t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 d i n n d i n n + 2 d i n n + 3 w l = 5 t w p r e d i n n + 1 t w p s t t w t r t 1 2 t 1 1 t 1 3 t 1 4 d i n n + 5 d i n n + 6 d i n n + 4 d i n n + 7 r l = 6 n o t e s : 1 . r l = 6 ( c l = 6 , a l = 0 ) , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d i n n = d a t a - i n f r o m c o l u m n n ; d o u t b = d a t a - o u t f r o m c o l u m n b . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b l 8 s e t t i n g a c t i v a t e d b y e i t h e r m r 0 a [ 1 : 0 ] = 0 0 o r m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g w r i t e c o m m a n d a t t 0 . r e a d c o m m a n d a t t 1 3 c a n b e e i t h e r b c 4 o r b l 8 d e p e n d i n g o n m r 0 a [ 1 : 0 ] a n d a 1 2 s t a t u s a t t 1 3 . c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p r e a d n o p n o p n o p n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e b a n k c o l b b a n k c o l n
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 63 - figure 5 1 C write (bc4) to read (bc4/bl8) otf figure 5 2 C write (bc4) to read (bc4) t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 d i n n d i n n + 2 w l = 5 t w p r e d i n n + 1 t w p s t t w t r t 1 2 t 1 1 t 1 3 t 1 4 d i n n + 3 r l = 6 n o t e s : 1 . r l = 6 ( c l = 6 , a l = 0 ) , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d i n n = d a t a - i n f r o m c o l u m n n ; d o u t b = d a t a - o u t f r o m c o l u m n b . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g w r i t e c o m m a n d a t t 0 . r e a d c o m m a n d a t t 1 3 c a n b e e i t h e r b c 4 o r b l 8 d e p e n d i n g o n m r 0 a [ 1 : 0 ] a n d a 1 2 s t a t u s a t t 1 3 . c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p r e a d n o p n o p n o p n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e b a n k c o l b b a n k c o l n 4 c l o c k s t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 d i n n d i n n + 2 w l = 5 t w p r e d i n n + 1 t w p s t t w t r t 1 2 t 1 1 t 1 3 t 1 4 d i n n + 3 r l = 6 n o t e s : 1 . r l = 6 ( c l = 6 , a l = 0 ) , w l = 5 ( c w l = 5 , a l = 0 ) 2 . d i n n = d a t a - i n f r o m c o l u m n n ; d o u t b = d a t a - o u t f r o m c o l u m n b . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 1 0 . c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p r e a d n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e b a n k c o l b b a n k c o l n
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 64 - figure 5 3 C write (bl8) to write (bc4) otf figure 5 4 C write (bc4) to write (bl8) otf t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 d i n n d i n n + 2 d i n n + 3 w l = 5 t w p r e d i n n + 1 t w p s t 4 c l o c k s t 1 2 t 1 1 t 1 3 t 1 4 d i n n + 5 d i n n + 6 d i n n + 4 d i n b + 3 t w t r n o t e s : 1 . w l = 5 ( c w l = 5 , a l = 0 ) 2 . d i n n ( o r b ) = d a t a - i n f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b l 8 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g w r i t e c o m m a n d a t t 0 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g w r i t e c o m m a n d a t t 4 . c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 w r i t e n o p n o p n o p n o p w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e b a n k c o l b b a n k c o l n d i n n + 7 d i n b + 1 d i n b + 2 d i n b t w r w l = 5 t c c d t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1 0 d i n n d i n n + 2 d i n n + 3 w l = 5 t w p r e d i n n + 1 t w p s t 4 c l o c k s t 1 2 t 1 1 t 1 3 t 1 4 d i n b + 1 d i n b + 2 d i n b d i n b + 7 t w t r n o t e s : 1 . w l = 5 ( c w l = 5 , a l = 0 ) 2 . d i n n ( o r b ) = d a t a - i n f r o m c o l u m n n ( o r c o l u m n b ) . 3 . n o p c o m m a n d s a r e s h o w n f o r e a s e o f i l l u s t r a t i o n ; o t h e r c o m m a n d s m a y b e v a l i d a t t h e s e t i m e s . 4 . b c 4 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 0 d u r i n g w r i t e c o m m a n d a t t 0 . b l 8 s e t t i n g a c t i v a t e d b y m r 0 a [ 1 : 0 ] = 0 1 a n d a 1 2 = 1 d u r i n g w r i t e c o m m a n d a t t 4 . c k # c k c o m m a n d * 3 a d d r e s s * 4 d q s , d q s # d q * 2 w r i t e n o p n o p n o p n o p w r i t e n o p n o p n o p n o p n o p n o p n o p n o p n o p t r a n s i t i o n i n g d a t a d o n ' t c a r e b a n k c o l b b a n k c o l n d i n b + 3 d i n b + 5 d i n b + 6 d i n b + 4 t w r w l = 5 t c c d t w p r e t w p s t
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 65 - 8.15 refresh command the refresh command (ref) is used during normal operation of the ddr3 sdrams. this command is non persistent, so it must be issued each time a refresh is required. the ddr3 sdram requires refresh cycles at an average periodic interval of t refi . when cs#, ras# and cas# are held low and we# high at the ri sing edge of the clock, the chip enters a refresh cycle. all banks of the sdram must be precharged and idle for a minimum of the precharge time t rp (min) before the refresh command can be applied. the refresh addressing is generated by the internal refresh controller. this makes the address bits d on't c are during a refresh command. an internal address counter supplies the addresses during the refresh cycle. no control of the external address bus is required once this cycle has started. when the refresh cyc le has completed, all banks of the sdram will be in the precharged (idle) state. a delay between the refresh command and the next valid command, except nop or des, must be greater than or equal to the minimum refresh cycle time t rfc (min) as shown in figure 5 5 . note that the t rfc timing parameter depends on memory density. in general, a refresh command needs to be issued to the ddr3 sdram regularly every t refi interval. to allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided. a maximum of 8 refresh commands can be postponed during operation of the ddr3 sdram, meaning that at no point in time more than a total of 8 refresh commands are allowed to be postponed. in case tha t 8 refresh commands are postponed in a row, the resulting maximum interval between the surrounding refresh commands is limited to 9 t refi (see figure 5 6 ). a maximum of 8 additional refresh commands can be issued in advance (pulled in), with each one r educing the number of regular refresh commands required later by one. note that pulling in more than 8 refresh commands in advance does not further reduce the number of regular refresh commands required later, so that the resulting maximum interval between two surrounding refresh commands is limited to 9 t refi (see figure 5 7 ). at any given time, a maximum of 16 ref commands can be issued within 2 x t refi . self - refresh mode may be entered with a maximum of eight refresh commands being postponed. after exit ing self - refresh mode with one or more refresh commands postponed, additional refresh commands may be postponed to the extent that the total number of postponed refresh commands (before and after the self - refresh) will never exceed eight. during self - refre sh mode, the number of postponed or pulled - in ref commands does not change . figure 5 5 C refresh command timing t i m e b r e a k d o n ' t c a r e d r a m m u s t b e i d l e d r a m m u s t b e i d l e n o t e s : 1 . o n l y n o p / d e s c o m m a n d s a l l o w e d a f t e r r e f r e s h c o m m a n d r e g i s t e r e d u n t i l t r f c ( m i n ) e x p i r e s . 2 . t i m e i n t e r v a l b e t w e e n t w o r e f r e s h c o m m a n d s m a y b e e x t e n d e d t o a m a x i m u m o f 9 x t r e f i . t 0 t 1 t a 0 t a 1 t b 0 t b 1 t b 2 t b 3 c k # c o m m a n d r e f n o p n o p r e f n o p v a l i d n o p t c 1 t c 0 t c 2 t c 3 n o p t r f c v a l i d r e f v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d t r f c ( m i n ) t r e f i ( m a x . 9 x t r e f i ) c k
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 66 - figure 5 6 C postponing refresh commands (example) figure 5 7 C pulling - in refresh commands (example) t r f c 8 r e f - c o m m a n d s p u l l e d - i n t r e f i 9 x t r e f i t t r f c 8 r e f - c o m m a n d s p u l l e d - i n t r e f i 9 x t r e f i t
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 67 - 8.16 self - refresh operation the self - refresh command can be used to retain data in the ddr3 sdram, even if the rest of the system is powered down. when in the self - refresh mode, the ddr3 sdram retains data without external clocking. the ddr3 sdram device has a built - in timer to accommodate self - refresh operation. the self - refresh - entry (sre) command is defined by having cs#, ras#, cas#, and cke held low with we# high at the rising edge of the clock. before issuing the self - refresh - entry command, the ddr3 sdram must be idle with all bank precharge state with t rp satisfied. idle state is defined as all banks are closed (t rp , t dal , etc. satisfied), no data bursts are in progress, cke is high, and all timings from previous operations are satisfied (t mrd , t mod , t rfc , t zq init, t zq oper, t zqcs , etc.) also, on - die termination must be turned off before issuing self - refresh - entry command, by either registering odt pin low odtl + 0.5t ck prior to the self - refresh entr y command or using mrs to mr1 command. once the self - refresh entry command is registered, cke must be held low to keep the device in self - refresh mode. during normal operation (dll on), mr1 (a0 = 0), the dll is automatically disabled upon entering self - ref resh and is automatically enabled (including a dll - reset) upon exiting self - refresh. when the ddr3 sdram has entered self - refresh mode, all of the exter nal control signals, except cke and reset#, are d on't care . for proper self - refresh operation, all po wer supply and reference pins (v dd , v ddq , v ss , v ssq , v r ef ca and v r ef dq ) must be at valid levels. v refdq supply may be turned off and v refdq may take any value between v ss and v dd during self refresh operation, provided that v ref dq is valid and stable prior to cke going back high and that first write operation or first write leveling activity may not occur earlier than 512 nck after exit from self refresh . the dram initiates a minimum of one refresh command internally within t cke period once it enters self - r efresh mode. the clock is internally disabled during self - refresh operation to save p ower. the minimum time that the ddr3 sdram must remain in self - refresh mode is t cke sr . the user may change the external clock frequency or halt the external clock t cksre after self - refresh entry is regi stered, however, the clock must be restarted and stable t cksrx before the device can exit self - refresh operation. the procedure for exiting self - refresh requires a sequence of events. first, the clock must be stable prior to cke going back high. once a self - refresh exit command (srx, combination of cke going high and either nop or deselect on command bus) is registered, a delay of at least t xs must be satisfied before a valid command not requiring a locked dll can be issued t o the device to allow for any internal refresh in progress. before a command that requires a locked dll can be applied, a delay of at least t xsdll must be satisfied. depending on the system environment and the amount of time spent in self - refresh, zq cali bration commands may be required to compensate for the voltage and temperature drift as described in section 8 .18 zq calibration commands on page 7 7 . to issue zq calibration commands, applicable timing requirements must be satisfied (see figure 7 2 - zq calibration timing on page 7 8 ). cke must r emain high for the entire self - refresh exit period t xsdll for proper operation except for self - refresh re - entry. upon exit from self - refresh, the ddr3 sdram can be put back into self - refresh mode after waiting at least t xs period and issuing one refresh command (refresh period of t rfc ). nop or deselect commands must be registered on each positive clock edge during the self - refresh exit interval t xs . odt must be turned off during t xsdll .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 68 - the use of self - refresh mode introd uces the possibility that an internally timed refresh event can be missed when cke is raised for exit from self - refresh mode. upon exit from self - refresh, the ddr3 sdram requires a minimum of one extra refresh command before it is put back into self - refres h mode. note s : 1. only nop or des command. 2. valid commands not requiring a locked dll. 3. valid commands requiring a locked dll . figure 5 8 C self - refresh entry/exit timing t 0 t 1 t 2 t a 0 t b 0 t c 0 t c 1 t d 0 c k # c k c o m m a n d t f 0 t e 0 v a l i d v a l i d v a l i d n o p s r e n o p n o p * 1 v a l i d * 2 v a l i d * 3 s r x v a l i d v a l i d t r p o d t l t x s d l l t x s t i s t i s t c p d e d t c k e s r t c k s r e t c k s r x e n t e r s e l f r e f r e s h e x i t s e l f r e f r e s h c k e o d t a d d r e s s t i m e b r e a k d o n ' t c a r e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 69 - 8.17 power - down modes 8.17.1 power - down entry and exit power - down is synchronously entered when cke is registered low (along with nop or deselect command). cke is not allowed to go low while mode register set command, mpr operations, zqcal operations, dll locking or read / write operation are in progress. cke is allowed to go low while any of other operations such as row activation, precharge or auto - precharge and refresh are in progress, but power - down i dd spec will not be applied until finishing those operations. timing diagrams are shown in figure 5 9 through figure 7 1 wit h details for entry and exit of power - down. the dll should be in a locked state when power - down is entered for fastest power - down exit timing. if the dll is not locked during power - down entry, the dll must be reset after exiting power - down mode for proper read operation and synchronous odt operation. dram design provides all ac and dc timing and voltage specification as well as proper dll operation with any cke intensive operations as long as dram controller complies with dram specifications. during power - d own, if all banks are closed after any in - progress commands are completed, the device will be in precharge power - down mode; if any bank is open after in - progress commands are completed, the device will be in active power - down mode. entering power - down deactivates the input and output buffers, excluding ck, ck#, odt, cke and reset#. to protect dram internal delay on cke line to block the input signals, multiple nop or deselect commands are needed during the cke switch off and cycle(s) after, this timing period are defined as t cpded . cke_low will result in deactivation of command and address receivers after t cpded has expired. table 7 C power - down entry definitions status of dram mrs bit a12 dll pd exit relevant parameters active (a bank or more open) don't care on fast txp to any valid command precharged (all banks precharged) 0 off slow txp to any valid command. since it is in precharge state, commands here will be act, ref, mrs, pre or prea. txpdll to commands that need the dll to operate, such as rd, rda or odt control line. precharged (all banks precharged) 1 on fast txp to any valid command also, the dll is disabled upon entering precharge power - down (slow exit mode), but the dll is kept enabled during precharge power - down (fast exit mode) or active power - down. in power - down mode, cke low, reset# high, and a stable clock signal must be maint ained at the inputs of the ddr3 sdram, and odt should be in a valid state, but all other input signa ls are d on't c are . (if reset# goes low during power - down, the dram will be out of pd mode and into reset state.) cke low must be maintained until t cke has been satisfied. power - down duration is limited by 9 times t refi of the device. the power - down state is synchronously exited when cke is registered high (along with a nop or deselect command). cke high must be maintained until t cke has been satisfied. a valid, executable command can be applied with power - down exit latency, t xp and/or t xpdll after cke goes high. power - down exit latency is defined in section 10 .1 6 ac characteristics on page 1 3 8 . active power down entry and exit timing dia gram example is shown in figure 5 9 . timing diagrams for cke with pd entry, pd exit with read and read with auto pr echarge, write, write with auto precharge, activate, precharge, refresh, and mrs are shown in figure 60 through figure 6 8 . additional clarific ations are shown in figure 6 9 through figure 7 1 .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 70 - note: 1. valid command at t0 is act, nop, des or pre with still one bank remaining open after completion of the precharge command. figure 5 9 C active power - down entry and exit timing diagram figure 60 C power - down entry after read and read with auto precharge t 0 t 1 t 2 t a 0 t b 0 t b 1 t c 0 c k # c k v a l i d n o p n o p t i s t a 1 n o p n o p n o p v a l i d v a l i d v a l i d v a l i d v a l i d t i h t i h t i s t x p t c k e t c p d e d e n t e r p o w e r - d o w n m o d e e x i t p o w e r - d o w n m o d e t p d c o m m a n d c k e a d d r e s s t i m e b r e a k d o n ' t c a r e t 0 t 1 t a 0 t a 1 t a 2 t a 3 t a 4 t a 5 t a 6 t a 7 t a 8 c k # c k c o m m a n d a d d r e s s d q s , d q s # d q b l 8 d o u t b d o u t b + 2 d o u t b + 3 v a l i d r d o r r d a n o p n o p n o p n o p d o u t b + 1 t c p d e d t b 1 t b 0 n o p n o p v a l i d d o u t b + 5 d o u t b + 6 d o u t b + 4 d o u t b + 7 n o p d o u t b + 1 d o u t b + 2 d o u t b d o u t b + 3 n o p n o p n o p n o p v a l i d v a l i d t i s t p d r l = a l + c l t r d p d e n d q b c 4 t i m e b r e a k t r a n s i t i o n i n g d a t a d o n ' t c a r e p o w e r - d o w n e n t e r y c k e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 71 - note: 1. t wr is programmed through mr0 . figure 6 1 C power - down entry after write with auto precharge figure 6 2 C power - down entry after write t 0 t 1 t a 0 t a 1 t a 2 t a 3 t a 4 t a 5 t a 6 t a 7 t b 2 c k # c k c o m m a n d a d d r e s s d i n b d i n b + 2 d i n b + 3 b a n k c o l n w r i t e n o p n o p n o p n o p d i n b + 1 t c p d e d t b 1 t b 0 n o p n o p n o p d i n b + 5 d i n b + 6 d i n b + 4 d i n b + 7 n o p d i n b + 1 d i n b + 2 d i n b d i n b + 3 n o p n o p n o p n o p t i s t p d w l = a l + c w l t w r a p d e n t c 0 t c 1 n o p w r * 1 v a l i d v a l i d v a l i d t i m e b r e a k t r a n s i t i o n i n g d a t a d o n ' t c a r e p o w e r - d o w n e n t e r y d q s , d q s # d q b l 8 d q b c 4 s t a r t i n t e r n a l p r e c h a r g e a 1 0 c k e t 0 t 1 t a 0 t a 1 t a 2 t a 3 t a 4 t a 5 t a 6 t a 7 t b 2 c k # c k c o m m a n d a d d r e s s d i n b d i n b + 2 d i n b + 3 b a n k c o l n w r i t e n o p n o p n o p n o p d i n b + 1 t c p d e d t b 1 t b 0 n o p n o p n o p d i n b + 5 d i n b + 6 d i n b + 4 d i n b + 7 n o p d i n b + 1 d i n b + 2 d i n b d i n b + 3 n o p n o p n o p n o p t i s t p d w l = a l + c w l t w r p d e n t c 0 t c 1 n o p t w r v a l i d v a l i d v a l i d t i m e b r e a k t r a n s i t i o n i n g d a t a d o n ' t c a r e p o w e r - d o w n e n t e r y d q s , d q s # d q b l 8 d q b c 4 a 1 0 c k e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 72 - figure 6 3 C precharge power - down (fast exit mode) entry and exit figure 6 4 C precharge power - down (slow exit mode) entry and exit t 0 t 1 t 2 t a 0 t b 0 t b 1 t c 0 c k # c k n o p n o p t i s t a 1 n o p n o p n o p v a l i d v a l i d v a l i d t i h t i s t x p t c k e t c p d e d e n t e r p o w e r - d o w n m o d e e x i t p o w e r - d o w n m o d e t p d c o m m a n d c k e t i m e b r e a k d o n ' t c a r e v a l i d t 0 t 1 t 2 t a 0 t b 0 t b 1 t c 0 c k # c k n o p n o p t i s t a 1 n o p n o p n o p v a l i d v a l i d t i h t i s t x p t c k e t c p d e d e n t e r p o w e r - d o w n m o d e e x i t p o w e r - d o w n m o d e t p d c o m m a n d c k e v a l i d v a l i d v a l i d t x p d l l t d 0 t i m e b r e a k d o n ' t c a r e v a l i d
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 73 - figure 6 5 C refresh command to power - down entry figure 6 6 C active command to power - down entry t 0 t 1 t 2 t a 0 c k # r e f n o p t a 1 n o p v a l i d v a l i d t p d t r e f p d e n t i s t c p d e d c o m m a n d a d d r e s s v a l i d n o p t 3 v a l i d c k e c k t i m e b r e a k d o n ' t c a r e v a l i d v a l i d t 0 t 1 t 2 t a 0 c k # a c t i v e n o p t a 1 n o p v a l i d v a l i d t p d t a c t p d e n t i s t c p d e d c o m m a n d a d d r e s s v a l i d n o p t 3 v a l i d c k e c k t i m e b r e a k d o n ' t c a r e v a l i d v a l i d
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 74 - figure 6 7 C precharge / precharge all command to power - down entry figure 6 8 C mrs command to power - down entry t 0 t 1 t 2 t a 0 c k # p r e o r p r e a n o p t a 1 n o p v a l i d v a l i d t p d t p r e p d e n t i s t c p d e d c o m m a n d a d d r e s s v a l i d n o p t 3 v a l i d c k e c k t i m e b r e a k d o n ' t c a r e v a l i d v a l i d t 0 t 1 t a 0 t b 0 m r s n o p t b 1 n o p v a l i d v a l i d t p d t m r s p d e n t i s t c p d e d c o m m a n d a d d r e s s v a l i d n o p t a 1 v a l i d c k e c k # c k t i m e b r e a k d o n ' t c a r e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 75 - 8.17.2 power - down clarifications - case 1 when cke is registered low for power - down entry, t pd (min) must be satisfied before cke can be registered high for power - down exit. the minimum value of parameter t pd (min) is equal to the minimum value of parameter t cke (min) as shown in section 10 .1 6 ac characteristics on p age 1 3 8 . a detailed example of case 1 is shown in figure 6 9 . figure 6 9 C power - down entry/exit clarifications - case 1 8.17.3 power - down clarifications - case 2 for certain cke intensive operations, for example, repeated pd exit - refresh - pd entry sequences, the number of clock cycles between pd exit and pd entry may be insufficient to keep the dll updated. therefore, the following conditions must be met in addition to t cke in order to maintain proper dram operation when the refr esh command is issued between pd exit and pd entry. power - down mode can be used in conjunction with the refresh command if the following conditions are met: 1) t xp must be satisfied before issuing the command. 2) t xpdll must be satisfied (referenced to the registration of pd exit) before the next power - down can be entered. a detailed example o f case 2 is shown in figure 70 . figure 70 C power - down entry/exit clarifications - case 2 t 0 t 1 t 2 t a 0 t b 0 t b 1 t b 2 c k # c k v a l i d n o p n o p t i s t a 1 n o p n o p n o p v a l i d v a l i d t i h t i h t i s t c p d e d t c k e t c p d e d e n t e r p o w e r - d o w n m o d e e x i t p o w e r - d o w n m o d e t p d c o m m a n d c k e a d d r e s s t i m e b r e a k d o n ' t c a r e t i s e n t e r p o w e r - d o w n m o d e t 0 t 1 t 2 t a 1 c k # c k v a l i d n o p t b 0 n o p n o p n o p t x p d l l c o m m a n d n o p t a 0 c k e t b 1 t c 0 r e f a d d r e s s v a l i d t c p d e d e x i t p o w e r - d o w n m o d e e n t e r p o w e r - d o w n m o d e t i h t i s t i h t i s t p d t c 1 t d 0 n o p n o p t x p t c k e e n t e r p o w e r - d o w n m o d e t i m e b r e a k d o n ' t c a r e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 76 - 8.17.4 power - down clarifications - case 3 if an early pd entry is issued after a refresh command, once pd exit is issued, nop or des with cke high must be issued until t rfc (min) from the refresh command is satisfied. this means cke can not be registered low twice within a t rfc (min) window. a detailed example of case 3 is shown in figure 7 1 . figure 71 C power - down entry/exit clarifications - case 3 t 0 t 1 t 2 t a 1 c k # c k r e f n o p t b 0 n o p n o p n o p t r f c ( m i n ) c o m m a n d n o p t a 0 c k e t b 1 t c 0 n o p a d d r e s s t c p d e d e x i t p o w e r - d o w n m o d e e n t e r p o w e r - d o w n m o d e t i h t i s t i h t i s t p d t c 1 t d 0 n o p n o p t x p t c k e e n t e r p o w e r - d o w n m o d e t i m e b r e a k d o n ' t c a r e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 77 - 8.18 zq calibration commands 8.18.1 zq calibration description zq calibration command is used to calibrate dram r on & odt values over pvt (process, voltage and temperature). an external resistor (r zq ) between the dram zq pin and ground is used as a calibration reference. ddr3 sdram needs longer time to calibrate output driver and on - die termination circuits after power - up and/or any reset, m edium time for a full calibration during normal operation (e.g. after self - refresh exit) and relatively smaller time to perform periodic update calibrations. zqcl (zq calibration long) command is used to perform the initial calibration during power - up init ialization sequence. this command may be issued at any time by the controller depending on the system environment. zqcl command triggers the calibration engine inside the dram and, once calibration is achieved, the calibrated values are transferred from th e calibration engine to dram io, which gets reflected as updated output driver and on - die termination values. the first zqcl command issued after reset is allowed a timing period of t zq init to perform the full calibration and the transfer of values. all ot her zqcl commands except the first zqcl command issued after reset are allowed a timing period of t zq oper. zqcs (zq calibration short) command is used to perform periodic calibrations to account for voltage and temperature variations. a shorter timing window is provided to perform the calibration and transfer of values as defined by timing parameter t zqcs . one zqcs command can effectively correct a minimum of 0.5 % (zq correction) of r on and r tt impedance error within 64 nck for all speed bins assuming the maximum sensitivities specified in the output driver voltage and temperature sensitivity and odt voltage and temperature sensitivity tables. the appropriate interval between zqcs commands can be determined from these tables and other application - sp ecific parameters. one method for calculating the interval between zqcs commands, given the temperature (tdriftrate) and voltage (vdriftrate) drift rates that the sdram is subject to in the application, is illustrated. the interval could be defined by the following formula: where tsens = max(drttdt, drondtm) and vsens = max(drttdv, drondvm) define the sdram temperature and voltage sensitivities. for example, if tsens = 1.5%/ ? c , vsens = 0.15%/ mv, tdriftrate = 1 ? c /sec and vdriftrate = 15 mv/sec, then the interval between zqcs commands is calculated as: = 0.133 128ms no other activities should be performed on the dram channel by the controller for the duration of t zq init, t zq oper, or t zqcs . the quiet time on the d ram channel allows accurate calibration of output driver and on - die termination values. once dram calibration is achieved, the dram should disable zq current consumption path to reduce power. all banks must be precharged and t rp met before zqcl or zqcs com mand s are issued by the controller . see section 9 .1 command truth table on page 9 4 for a description of the zqcl and zqcs commands . zq calibration commands can also be issued in parallel to dll lock time w hen coming out of self refresh. upon self - refresh exit, d dr3 sdram will not perform an io calibration without an explicit zq calibration command. the earliest possible time for zq calibration command ( zqcs or zqcl ) after self refresh exit is t xs . in systems that share the zq resistor between devices, the control ler must not allow any overlap of t zq oper, t zq init, or t zqcs between the devices. ) vdriftrate (vsens + ) tdriftrate (tsens on zqcorrecti 15) (0.15 + 1) (1.5 0.5
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 78 - 8.18.2 zq calibration timing note s : 1. cke must be continuously registered high during the calibration procedure. 2. on - die termination must be disabled via the odt signal or mrs during the calibration procedure. 3. all devices connected to the dq bus should be high impedance during the calibration procedure . figure 7 2 C zq calibration timing 8.18.3 zq external resistor value, tolerance, and capacitive loading in or der to use the zq calibration function, a 240 ohm 1% tolerance external resistor must be connected between the zq pin and ground. the single resistor can be used for each sdram or one resistor can be shared between two sdrams if the zq calibration timings for each sdram do not overlap. the total capacitive loading on the zq pin must be limited ( see section 10 .11 input/output capacitance on pag e 1 20 ). t 0 t 1 t a 1 c k # c k z q c l n o p t a 3 n o p v a l i d z q c s c o m m a n d v a l i d t a 0 a 1 0 t b 1 t c 0 n o p a d d r e s s t z q i n i t o r t z q o p e r t c 1 t c 2 n o p n o p t a 2 t b 0 v a l i d n o p v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d c k e o d t h i - z a c t i v i t i e s h i - z v a l i d v a l i d v a l i d v a l i d a c t i v i t i e s d q b u s t z q c s t i m e b r e a k d o n ' t c a r e * 1 * 2 * 3 * 1 * 2 * 3
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 79 - 8.19 on - die termination (odt) odt (on - die termination) is a feature of the ddr3 sdram that allows the dram to turn on/off termination resistance for each dqu, dql, dqsu, dqsu#, dqsl, dqsl#, dmu and dml signal via the odt control pin. the odt feature is designed to improve signal integrity of the memory channel by allowing the dram controller to independently turn on/off termination resistance for any or all dram devices. more details about odt control modes and odt timing modes can be found further do wn in this document: ? the odt control modes are described in section 8.19.1 ? the odt synchronous mode is described in section 8.19.2 ? the dynamic odt feature is described in section 8.19.3 ? the odt asynchronous mode is described in s ection 8.19.4 ? the transitions between odt synchronous and asynchronous are described in section 8.19.4.1 through section 8.19.4.4 the odt feature is turned off and not supported in self - refresh mode. a simple functional representatio n of the dram odt feature is shown in figure 7 3 . figure 7 3 C functional representation of odt the switch is enabled by the internal odt control logic, which uses the external odt pin and other control information, see below. the value of r tt is determined by the settings of mode register bits ( s ee figure 6 - mr 1 definition on page 20 and figure 7 - mr2 definition on page 2 2 ). the odt pin will be ignored if the mode registers mr1 and mr2 are programmed to disable odt, and in self - refresh mode. 8.19.1 odt mode register and odt truth table the odt mode is enabled if any of mr1 {a9, a6, a2} or mr2 {a10, a9} are non zero. in this case, the value of r tt is determined by the settings of those bits ( see figure 6 - mr 1 definition on page 20 ). application: controller sends wr command together with odt asserted. ? one possible application: the rank that is being written to provides termination. ? dram turns on termination if it sees odt asserted (unless odt is disabled by mr). ? dram does not use an y write or read command decode information. ? the termination truth table is shown in table 8 . table 8 C termination truth table odt pin dram termination state 0 off 1 on, (off, if disabled by mr1 {a9, a6, a2} and mr2 {a10, a9} in general) v d d q / 2 s w t i c h o d t r t t t o o t h e r c i r c u i t r y l i k e r c v , d q , d q s , d m
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 80 - 8.19.2 synchronous odt mode synchronous odt mode is selected whenever the dll is turned on and locked. based on the power - down definition, these modes are: ? any bank active with cke high ? refresh with cke high ? idle mode with cke high ? active power down mode (regardless of mr0 b it a12) ? precharge power down mode if dll is enabled during precharge power down by mr0 bit a12. the direct odt feature is not supported during dll - off mode. the on - die termination resistors must be disabled by continuously registering the odt pin low and/or by programming the r tt _nom bits mr1{a9,a6,a2} to {0,0,0} via a mode register set command during dll - off mode. in synchronous odt mode, r tt will be turned on odtlon clock cycles after odt is sampled high by a rising clock edge and turned off odtloff clock cycles after odt is registered low by a rising clock edge. the odt latency is tied to the write latency (wl) by: odtlon = wl - 2; odtloff = wl - 2. 8.19.2.1 odt latency and posted odt in synchronous odt mode, the additive latency (al) programmed into the mod e register (mr1) also applies to the odt signal. the dram internal odt signal is delayed for a number of clock cycles defined by the additive latency (al) relative to the external odt signal. odtlon = cwl + al - 2; odtloff = cwl + al - 2. for more details refer to the odt t iming p arameters in section 10 .1 6 ac characteristics on page 1 3 8 . table 9 C odt latency symbol parameter ddr3 - 1 333 , ddr3 - 1 600 & ddr3 - 1 866 unit odtlon odt turn on latency wl - 2 = cwl + al - 2 n ck odtloff odt turn off latency wl - 2 = cwl + al - 2 8.19.2.2 timing parameters in synchronous odt mode, the following timing param eters apply (see also figures 7 4 ): odtlon, odtloff, t aon ,min,max, t aof ,min,max. minimum r tt turn - on time (t aon min) is the point in time when the d evice leaves high impedance and odt resistance begins to turn on. maximum r tt turn on time (t aon max) is the point in time when the odt resistance is fully on. both are measured from odtlon. minimum r tt turn - off time (t aof min) is the point in time when the de vice starts to turn off the o dt resistance. maximum r tt turn off time (t aof max) is the point in time when the on - die termination has reached high impedance. both are measured from odtloff. when odt is asserted, it must remain high until odth4 is satisfied. if a write command is regist ere d by the sdram with odt high, then odt must remain high until odth4 (bl = 4) or odth8 (bl = 8) after the write command (see figure 7 5 ). odth4 and odth8 are measured from odt registered high to odt registered low or from the registration of a write comma nd until odt is registered low. odt must be held high for at least odth4 after assertion (t1); odt must be kept high odth4 (bl = 4) or odt h8 (bl = 8) after write command (t7 ). odth is measured from odt first registered high to odt first registered low, or from registration of write command with odt high to odt registered low. note that although odth4 is satisfied from odt registered high at t6 , odt must not go low before t11 as odth4 must also be satisfied from the registration of the write command at t7 .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 81 - figure 7 4 C sync hronous odt timing ( al = 3; cwl = 5; odtlon = al + cwl - 2 = 6 ; odtloff = al + cwl - 2 = 6 ) figure 7 5 C synchronous odt ( bl = 4, wl = 7 ) t 0 t 1 t 2 t 4 c k # c k t 5 t 3 o d t t 6 t 7 t a o n m i n t 8 t 9 t 1 0 t 1 2 t 1 3 t 1 4 t 1 5 t 1 1 a l = 3 o d t h 4 m i n o d t l o n = c w l + a l - 2 t a o n m a x r t t _ n o m t a o f m i n t a o f m a x o d t l o f f = c w l + a l - 2 a l = 3 c w l - 2 c k e d r a m _ r t t t r a n s i t i o n i n g d o n ' t c a r e t 0 t 1 t 2 t 4 c k # c k t 5 t 3 o d t t 6 t 7 t a o n m i n t 8 t 9 t 1 0 t 1 2 t 1 3 t 1 4 t 1 5 t 1 1 t a o n m a x r t t _ n o m t a o f m i n t a o f m a x c k e d r a m _ r t t n o p n o p w r s 4 n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p t 1 6 t a o n m a x t a o n m i n t a o f m i n t a o f m a x c o m m a n d o d t h 4 o d t h 4 m i n o d t h 4 o d t l o n = w l - 2 o d t l o n = w l - 2 o d t l o f f = w l - 2 o d t l o f f = w l - 2 t r a n s i t i o n i n g d o n ' t c a r e t 1 7
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 82 - 8.19.2.3 odt during reads as the ddr3 sdram can not terminate and drive at the same time, r tt must be disabled at least half a clock cycle before the read preamble by driving the odt pin low appropriately. r tt may not be enabled until the end of the post - amble as shown in th e example below. as shown in figure 7 6 below, at cycle t15, dram turns on the termination when it stops driving, which is determined by t hz . if dram stops driving early (i.e., t hz is early), then t aon min timing may apply. if dram stops driving late (i.e., t hz is late), then dram complies with t aon max timing. note that odt may be disabled earlier before the read and enabled later after the read than shown in this example in figure 7 6 . figure 7 6 C odt must be disabled externally d uring reads by driving odt low. (cl = 6; al = cl - 1 = 5; rl = al + cl = 11; cwl = 5; odtlon = cwl + al - 2 = 8; odtloff = cwl + al - 2 = 8) t 0 t 1 t 2 t 4 c k # c k t 5 t 3 o d t t 6 t 7 t 8 t 9 t 1 0 t 1 2 t 1 3 t 1 4 t 1 5 t 1 1 r e a d n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p t 1 6 t a o f m i n c o m m a n d o d t t l o f f = c w l + a l - 2 o d t l o n = c w l + a l - 2 r l = a l + c l v a l i d r t t _ n o m n o p t 1 7 n o p n o p n o p d o u t b d o u t b + 2 d o u t b + 3 d o u t b + 1 d o u t b + 5 d o u t b + 6 d o u t b + 4 d o u t b + 7 t a o f m a x t a o n m a x r t t _ n o m n o p n o p r t t d q s , d q s # d q t r a n s i t i o n i n g d o n ' t c a r e a d d r e s s
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 83 - 8.19.3 dynamic odt in certain application cases and to further enhance signal int egrity on the data bus, it is desirable that the termination strength of the ddr3 sdram can be changed without issuing an mrs command. this requirement is supported by the dynamic odt feature as described as follows: 8.19.3.1 functional description: the dynamic o dt mode is enabled if bit (a9) or (a10) of mr2 is set to 1. the function is described as follows: ? two r tt values are available: r tt _nom and r tt _wr. ? the value for r tt _nom is preselected via bits a[9,6,2] in mr1. ? the value for r tt _wr is preselected via bit s a[10,9] in mr2. ? during operation without write commands, the termination is controlled as follows: ? nominal termination strength r tt _nom is selected. ? termination on/off timing is controlled via odt pin and latencies odtlon and odtloff. ? when a write command (wr, wra, wrs4, wrs8, wras4, wras8) is registered, and if dynamic odt is enabled, the termination is controlled as follows: ? a latency odtlcnw after the write command, termination strength r tt _wr is selected. ? a latency odtlcwn8 (for bl8, fixed by mr s or selected otf) or odtlcwn4 (for bc4, fixed by mrs or selected otf) after the write command, termination strength r tt _nom is selected. ? termination on/off timing is controlled via odt pin and odtlon, odtloff. table 10 shows latencies and timing parameter s which are relevant for the on - die termination control in dynamic odt mode. the dynamic odt feature is not supported at dll - off mode. user must use mrs command to set rtt_wr, mr2{a10, a9}={0,0}, to disable dynamic odt externally. when odt is asserted, it must remain high until odth4 is satisfied. if a write command is registered by the sdram with odt high, then odt must remain high until odth4 (bl = 4) or odth8 (bl = 8) after the write command ( see figure 7 7 ). odth4 and odth8 are measured from odt registered high to odt registered low or from the registration of a write command until odt is registered low.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 84 - table 10 C latencies and timing parameters relevant for dynamic odt name and description abbr. defined from defined to definition for all ddr3 speed bins unit odt turn - on latency odtlo n registering external odt signal high t urning termination o n odtlo n = wl - 2 t ck odt turn - o ff latency odtlo ff registering external odt signal low t urning termination o ff odtlo ff = wl - 2 t ck odt latency for changing from rtt_nom to rtt_wr odtlc nw registering external write command c hange r tt strength from rtt_nom to rtt_wr odtlc nw = wl - 2 t ck odt latency for change from rtt_wr to rtt_nom (bl = 4) odtlcwn 4 registering external write command c hange r tt strength from rtt_wr to rtt_nom odtlcwn4 = 4 + odtloff t ck odt latency for change from rtt_wr to rtt_nom (bl = 8 ) odtlcwn 8 registering external write command c hange r tt strength from rtt_wr to rtt_nom odtlcwn 8 = 6 + odtlo ff t ck (avg) minimum odt high time after odt assertion odth4 registering odt high odt registered low odth4 = 4 t ck (avg) minimum odt high time after write (bl = 4) odth4 registering write with odt high odt registered low odth4 = 4 t ck (avg) minimum odt high time after write (bl = 8 ) odth 8 registering write with odt high odt registered low odth4 = 6 t ck (avg) r tt change skew t adc odtlcnw odtlcwn r tt valid t adc (min) = 0.3 * t ck (avg) t adc (max) = 0.7 * t ck (avg) t ck (avg) note: t aof nom and t adc nom are 0.5 t ck (effectively adding half a clock cycle to odtloff, odtcnw and odtlcwn) 8.19.3.2 odt timing diagrams the following pages provide exemplary timing diagrams as described in table 1 1 : table 11 C timing diagrams for dynamic odt figure and page description figure 7 7 on page 8 5 figure 7 7 , dynamic odt: behavior with odt being asserted before and after the write figure 7 8 on page 8 6 figure 7 8 , dynamic odt: behavior without write command, al = 0, cwl = 5 figure 7 9 on page 8 6 figure 7 9 , dynamic odt: behavior with odt pin being asserted together with write command for a duration of 6 clock cycles figure 80 on page 8 7 figure 80 , dynamic odt: behavior with odt pin being asserted together with write command for a duration of 6 clock cycles, example for bc4 (via mrs or otf), al = 0, cwl = 5 figure 8 1 on page 8 7 figure 8 1 , dynamic odt: behavior with odt pin being asserted together with write command for a duration of 4 clock cycles
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 85 - figure 7 7 C dynamic odt: behavior with odt being asserted before and after the write t 0 t 1 t 2 t 4 c k # c k t 5 t 3 o d t t 6 t 7 t 8 t 9 t 1 0 t 1 2 t 1 3 t 1 4 t 1 5 t 1 1 n o p n o p n o p t 1 6 t a d c m i n a d d r e s s o d t l o f f o d t h 4 o d t l c n w r t t _ n o m n o p t 1 7 d i n b d i n b + 2 d i n b + 3 d i n b + 1 t a d c m a x v a l i d o d t h 4 t a o n m i n t a o n m a x o d t l o n o d t l c w n 4 t a d c m a x t a d c m i n t a o f m a x t a o f m i n w l w r s 4 n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p r t t d q d q s , d q s # r t t _ w r r t t _ n o m t r a n s i t i o n i n g d o n ' t c a r e n o t e s : e x a m p l e f o r b c 4 ( v i a m r s o r o t f ) , a l = 0 , c w l = 5 . o d t h 4 a p p l i e s t o f i r s t r e g i s t e r i n g o d t h i g h a n d t o t h e r e g i s t r a t i o n o f t h e w r i t e c o m m a n d . i n t h i s e x a m p l e , o d t h 4 w o u l d b e s a t i s f i e d i f o d t w e n t l o w a t t 8 ( 4 c l o c k s a f t e r t h e w r i t e c o m m a n d ) .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 86 - note s : 1. odth4 is defined from odt registered high to odt registered low, so in this example, odth4 is satisfied. 2. odt registered low at t5 would also be legal . figure 7 8 C dynamic odt: behavior without write command, al = 0, cwl = 5 note: 1. example for bl8 (via mrs or otf), al = 0, cwl = 5. in this example, odth8 = 6 is exactly satisfied. figure 7 9 C dynamic odt: behavior with odt pin bei ng asserted together with write command for a duration of 6 clock cycles t a o f m a x t 0 t 1 t 2 t 4 c k # c k d o n ' t c a r e t 5 t 3 o d t t 6 t 7 t 8 t 9 t 1 0 t 1 1 v a l i d t r a n s i t i o n i n g t a o f m i n a d d r e s s r t t _ n o m o d t h 4 t a o n m i n t a o n m a x r t t o d t l o f f v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d v a l i d c o m m a n d d q d q s , d q s # o d t l o n t 0 t 1 t 2 t 4 c k # c k d o n ' t c a r e t 5 t 3 o d t t 6 t 7 t 8 t 9 t 1 0 t 1 1 n o p t r a n s i t i o n i n g t a o f m i n a d d r e s s r t t _ w r t a o f m a x o d t h 8 t a o n m i n t a d c m a x r t t o d t l o f f w r s 8 n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p c o m m a n d d q d q s , d q s # d i n b d i n b + 2 d i n b + 3 d i n b + 1 d i n b + 5 d i n b + 6 d i n b + 4 d i n b + 7 w l o d t l c w n 8 o d t l o n v a l i d o d t l c n w
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 87 - note s : 1. odth4 is defined from odt registered high to odt registered low, so in this example, odth4 is satisfied. 2. odt registered low at t5 would also be legal . figure 80 C dynamic odt: behavior with odt pin being asserted together with write command for a duration of 6 clock cycles, example for bc4 (via mrs or otf), al = 0, cwl = 5 note: 1. example for bc4 (via mrs or otf), al = 0, cwl = 5. in this example, odth4 = 4 is exactly satisfied . figure 8 1 C dynamic odt: behavior with odt pin being asserted together with write command for a duration of 4 clock cycles t 0 t 1 t 2 t 4 c k # c k d o n ' t c a r e t 5 t 3 o d t t 6 t 7 t 8 t 9 t 1 0 t 1 1 n o p t r a n s i t i o n i n g a d d r e s s r t t w r s 4 n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p c o m m a n d d q d q s , d q s # v a l i d o d t l c n w r t t _ w r d i n b d i n b + 2 d i n b + 3 d i n b + 1 w l o d t l c w n 4 r t t _ n o m t a d c m a x t a d c m i n t a o f m i n t a o f m a x o d t h 4 t a o n m i n t a d c m a x o d t l o f f o d t l o n t 0 t 1 t 2 t 4 c k # c k d o n ' t c a r e t 5 t 3 o d t t 6 t 7 t 8 t 9 t 1 0 t 1 1 n o p t r a n s i t i o n i n g a d d r e s s r t t w r s 4 n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p c o m m a n d d q d q s , d q s # v a l i d o d t l c n w r t t _ w r d i n b d i n b + 2 d i n b + 3 d i n b + 1 w l o d t l c w n 4 t a o f m a x t a o f m i n o d t h 4 t a o n m i n t a d c m a x o d t l o f f o d t l o n
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 88 - 8.19.4 asynchronous odt mode asynchronous odt mode is selected when dram runs in dllon mode, but dll is temporarily disabled (i.e. frozen) in precharge po wer - down (by mr0 bit a12). based on the power down mode definitions, this is currently precharge power down m ode if dll is disabled during precharge power down by mr0 bit a12. in asynchronous odt timing mode, internal odt command is not delayed by additive latency (al) relative to the external odt co mmand. in asynchronous odt mode, the following timing parameters apply (see figure 8 2 ): t aonpd , min , max, t aofpd , min , max. minimum r tt turn - on time (t aonpd min) is the point in time when the device termination circuit leaves high impedance state and odt resistance begins to turn on. maximum r tt turn on time (t aonpd max) is the point in time when the odt resistance is fully on. t aonpd min and t aonpd max are measured from odt being sampled high. minimum r tt turn - off time (t aofpd min) is the point in time when the devices termination circuit starts to turn off the odt resistance. maximum odt turn off time (t aofpd max) is the point in time when the on - die termination has reached high impedance. t aofpd min and t aofpd max are measured from odt being sampled low . figure 8 2 C asynchronous odt timings on ddr3 sdram with fast odt transition: al is ignored in precharge power down, odt receiver remains active, however no read or write command can be issued, as the respective add/c md receivers may be disabled. table 12 C asynchronous odt timing parameters for all speed bins symbol description m in . max. unit t aonpd asynchronous r tt turn - on delay (power - down with dll frozen) 2 8.5 ns t ao f pd asynchronous r tt turn - off delay (power - down with dll frozen) 2 8.5 ns t 0 t 1 t 2 t 4 c k # c k t 5 t 3 o d t t 6 t 7 t 8 t 9 t 1 0 t 1 2 t 1 3 t 1 4 t 1 5 t 1 1 t 1 6 t 1 7 t a o n p d m i n t i h r t t t i s t a o n p d m a x r t t t a o f p d m i n t a o f p d m a x t i h t i s c k e t r a n s i t i o n i n g d o n ' t c a r e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 89 - 8.19.4.1 synchronous to asynchronous odt mode transitions table 13 C odt timing parameters for power down (with dll frozen) entry and exit transition period description m in . max. odt to r tt turn - on delay min{ odtlon * t ck (avg) + t aon min; t aonpd min } max{ odtlon * t ck (avg) + t aon max; t aonpd max } min{ (wl - 2) * t ck (avg) + t aon min; t aonpd min } max{ (wl - 2) * t ck (avg) + t aon max; t aonpd max } odt to r tt turn - o ff delay min{ odtloff * t ck (avg) +t aof min; t aofpd min } max{ odtloff * t ck (avg) + t aof max; t aofpd max } min{ (wl - 2) * t ck (avg) +t aof min; t aofpd min } max{ (wl - 2) * t ck (avg) + t aof max; t aofpd max } t anpd wl - 1 8.19.4.2 synchronous to asynchronous odt mode transition during power - down entry if dll is selected to be frozen in precharge power down mode by the setting of bit a12 in mr0 to 0, there is a transition period around power down entry, where the ddr3 sdram may show either synchronous or asynchronous odt behavior. the transition period is defined by the parameters t anpd and t cpded (min). t anpd is equal to (wl - 1) and is counted backwards in time from the clock cycle where cke is first registered low. t cpded (min) starts with the clock cycle where cke is first registered low. the transition period begins with the starting p oint of t anpd and terminates at the end point of t cpded (min), as shown in figure 8 3 . if there is a refresh command in progress while cke goes low, then the transition period ends at the later one of t rfc (min) after the refresh command and the end point of t cpded (min), as shown in figure 8 4 . please note that the actual starting point at t anpd is excluded from the transition period, and the actual end points at t cpded (min) and t rfc (min), respectively, are included in the transition period. odt assertion during the transition period may result in an r tt change as early as the smaller of t aonpd min and (odtlon*t ck (avg) + t aon min) and as late as the larger of t aonpd max and (odtlon* t ck (avg) + t aon max). odt de - assertion during the transition period may result in an r tt change as early as the smaller of t aofpd min and (odtloff* t ck (avg) + t aof min) and as late as the larger of t aofpd max and (odtloff* t ck (avg) + t aof max). see table 13. note that, if al has a large value, the range where r tt is uncertain becomes quite large. figure 8 3 shows the three different cases: odt_a, synchronous behavior before t anpd ; odt_b has a state change during the transition period; odt_c shows a state change after the transition period .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 90 - figure 8 3 C synchronous to asynchronous transition during precharge power down (with dll frozen) entry (al = 0; cwl = 5; t anpd = wl - 1 = 4) t 0 t 1 t 2 t 4 c k # c k t 5 t 3 l a s t s y n c , o d t t 6 t 7 t 8 t 9 t 1 0 t 1 2 n o p t a o f m i n r t t t a o f m a x n o p n o p n o p n o p c o m m a n d t 1 1 r t t t a o f p d m i n r t t t a o f p d m a x n o p n o p n o p n o p n o p n o p t c p d e d t c p d e d m i n t a n p d o d t l o f f p d e n t r y t r a n s i t i o n p e r i o d t a o f p d m a x o d t l o f f + t a o f m i n o d t l o f f + t a o f m a x p d e n t r y t r a n s i t i o n p e r i o d t a o f p d m i n c k e r t t s y n c o r a s y n c , o d t r t t f i r s t a s y n c , o d t r t t t r a n s i t i o n i n g d a t a d o n ' t c a r e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 91 - figure 8 4 C synchronous to asynchronous transition after refresh command (al = 0; cwl = 5; t anpd = wl - 1 = 4) t 0 t 1 t 2 t 4 c k # c k t 5 t 3 c o m m a n d t 6 t 7 t 8 t 9 t 1 0 t 1 2 t 1 3 t a 0 t a 1 t 1 1 t a 2 t a 3 r t t c k e n o p n o p n o p n o p n o p n o p n o p r e f n o p r t t r t t t a o f p d m a x l a s t s y n c , o d t r t t s y n c o r a s y n c , o d t r t t f i r s t a s y n c , o d t t a o f p d m i n o d t l o f f + t a o f p d m a x t a o f p d m i n t r f c ( m i n ) o d t l o f f + t a o f p d m i n p d e n t r y t r a n s i t i o n p e r i o d t c p d e d m i n t a n p d o d t l o f f t a o f m a x t a o f m i n t r a n s i t i o n i n g d o n ' t c a r e t a o f p d m a x t i m e b r e a k r t t
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 92 - 8.19.4.3 asynchronous to synchronous odt mode transition during power - down exit if dll is selected to be frozen in precharge power down mode by the setting of bit a12 in mr0 to 0, there is a lso a transition period around power down exit, where either synchronous or asynchronous response to a change in odt must be expected from the ddr3 sdram. this transition period starts t anpd before cke is first registered high, and ends t xpdll after cke is first registered high. t anpd is equal to (wl - 1) and is counted (backwards) from the clock cycle where cke is first registered high. odt assertion during the transition period may result in an r tt change as early as the smaller of t aonpd min and (odtlon*t ck (avg) + t aon min) and as late as the larger of t aonpd max and (odtlon*t ck (avg) + t aon max). odt de - assertion during the transition period may result in an rtt change as early as the smaller of t aofpd min and (odtloff*t ck (avg) + t aof min) and as l ate as the larger of t aofpd max and (odtloff*t ck (avg) + t aof max). see table 13. note that, if al has a large value, the range where r tt is uncertain becomes quite large. figure 8 5 shows the three different cases: odt_c, asynchronous response before t anpd ; o dt_b has a state change of odt during the transition period; odt_a shows a state change of odt after the transition period with synchronous response. figure 8 5 C asynchronous to synchronous transit ion during precharge power down (with dll frozen) exit (cl = 6; al = cl - 1; cwl = 5; t anpd = wl - 1 = 9) t 0 t 1 t 2 t a 1 c k # c k t a 2 t a 0 c o m m a n d t a 3 t a 4 t a 5 t a 6 t b 0 t b 2 t c 0 t c 1 t c 2 t b 1 t d 0 t d 1 r t t c k e n o p n o p n o p n o p n o p n o p n o p n o p n o p r t t r t t r t t l a s t s y n c , o d t r t t s y n c o r a s y n c , o d t r t t f i r s t a s y n c , o d t t a o f m i n o d t l o f f + t a o f m a x t a o f p d m i n o d t l o f f + t a o f m i n p d e x i t t r a n s i t i o n p e r i o d t x p d l l t a o f p d m a x t a o f p d m i n n o p n o p n o p n o p n o p t a o f m a x o d t l o f f t a o f p d m a x t r a n s i t i o n i n g d o n ' t c a r e t a n p d t i m e b r e a k
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 93 - 8.19.4.4 asynchronous to synchronous odt mode during short cke high and short cke low periods if the total time in precharge power down state or idle state is very short, the transition periods for pd entry and pd exit may overlap (see figure 8 6 ). in this case, the response of the ddr3 sdrams r tt to a change in odt state at the input may be synchronous or asynchronous from the start of the pd entry transition period to the end of the pd exit transition period (even if the entry period ends later than the exit period). if the total time in i dle state is very short, the transition periods for pd exit and pd entry may overlap. in this case the response of the ddr3 s drams r tt to a change in odt state at the input may be synchronous or asynchronous from the start of the pd exit transition period to t he end of the pd entry transition period. note that in the bottom part of figure 8 6 it is assumed that there was no refresh comman d in progress when i dle state was entered . figure 8 6 C transition period for short cke cycles, entry and exit period overlapping (al = 0, wl = 5, t anpd = wl - 1 = 4) t 0 t 1 t 2 t 4 c k # c k t 5 t 3 c o m m a n d t 6 t 7 t 8 t 9 t 1 0 t 1 2 t 1 3 t 1 4 t 1 1 c k e n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p n o p r e f c k e t r f c ( m i n ) t a n p d p d e n t r y t r a n s i t i o n p e r i o d p d e x i t t r a n s i t i o n p e r i o d t a n p d s h o r t c k e l o w t r a n s i t i o n p e r i o d t a n p d s h o r t c k e h i g h t r a n s i t i o n p e r i o d t x p d l l t i m e b r e a k t r a n s i t i o n i n g d o n ' t c a r e t x p d l l
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 94 - 9. operation mode 9.1 command truth table notes 1, 2, 3 and 4 apply to the entire command truth table . note 5 a pplies to all read/write commands . [ba=bank address, ra=row address, ca=column address, bc # =burst chop, x=d on't c are , v=valid] table 1 4 C command truth table command abbr. cke cs # ras # cas # we # ba0 - ba2 a13 a12/ bc# a10/ ap a0 - a9, a11 notes previous cycle current cycle mode register set mrs h h l l l l ba op code refresh ref h h l l l h v v v v v self refresh entry sre h l l l l h v v v v v 7,9,12 self refresh exit srx l h h x x x x x x x x 7,8,9,12 l h h h v v v v v single bank precharge pre h h l l h l ba v v l v precharge all banks prea h h l l h l v v v h v bank activate act h h l l h h ba row address (ra) write (fixed bl8 or bc4) wr h h l h l l ba rfu v l ca 5 write (bc4, on the fly) wrs4 h h l h l l ba rfu l l ca 5 write (b l8 , on the fly) wrs 8 h h l h l l ba rfu h l ca 5 write with auto precharge (fixed bl8 or bc4) wra h h l h l l ba rfu v h ca 5 write with auto precharge (bc4, on the fly) wra s4 h h l h l l ba rfu l h ca 5 write with auto precharge (bl8, on the fly) wra s8 h h l h l l ba rfu h h ca 5 read (fixed bl8 or bc4) rd h h l h l h ba rfu v l ca 5 read (bc4, on the fly) rds4 h h l h l h ba rfu l l ca 5 read (b l8 , on the fly) rds 8 h h l h l h ba rfu h l ca 5 read with auto precharge (fixed bl8 or bc4) rd a h h l h l h ba rfu v h ca 5 read with auto precharge (bc4, on the fly) rd a s4 h h l h l h ba rfu l h ca 5 read with auto precharge (bl8, on the fly) rd a s8 h h l h l h ba rfu h h ca 5 no operation nop h h l h h h v v v v v 10 device deselected des h h h x x x x x x x x 11 power down entry pde h l l h h h v v v v v 6,12 h x x x x x x x x power down exit pd x l h l h h h v v v v v 6,12 h x x x x x x x x zq calibration long zqcl h h l h h l x x x h x zq calibration short zqc s h h l h h l x x x l x
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 95 - note s : 1. all ddr3 sdram commands are defined by states of cs#, ras#, cas#, we# and cke at the rising edge of the clock. the msb of ba, ra and ca are device density and configuration dependant . 2. reset# is low enable command which will be used only for asynchronous reset so must be maintained high during any function . 3. bank addresses (ba) determine which bank is to be operated upon. for (e)mrs ba selects an (extended) mode register. 4. v means h or l (but a defined logic level) and x means either defined or undefined (like floating) logic level . 5. burst reads or writes cannot be terminated or interrupted and fixed/on - the - f ly bl will be defined by mrs . 6. the power down mode does not perform any refresh operation . 7. the state of odt does not affect the states described in this table. the odt function is not available during self refresh . 8. self refresh exit is asynchronous. 9. v ref (both v ref dq and v ref ca ) must be maintained during self refresh operation. v ref dq supply may be turned off and v ref dq may take any value between v ss and v dd during self refresh operation, provided that v refdq is valid and stable prior to cke going back high and that first write operation or first write lev eling activity may not occur earlier than 512 nck after exit from self refresh. 10. the no operation command should be used in cases when the ddr3 sdram is in an idle or wait state. the purpose of the no operation command (nop) is to prevent the ddr3 sdram fro m register i ng any unwanted commands between operations. a no operation command will not terminate a pervious operation that is still executing, such as a burst read or write cycle. 11. the deselect command performs the same function as no operation command. 12. re fer to the cke truth table for more detail with cke transition.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 96 - 9.2 cke truth table notes 1 - 7 apply to the entire cke truth table . for power - down entry and exit parameters see 8 .17 power - down modes on page 6 9 . cke low is allowed only if t mrd and t mod are satisfied. table 1 5 C cke truth table current state 2 cke command (n) 3 ras # , cas # , we # , cs # action (n) 3 notes previous cycle 1 (n - 1) current cycle 1 (n) power down l l x maintain power down 14,15 l h deselect or nop power down exit 11,14 self refresh l l x maintain self refresh 15,16 l h deselect or nop self refresh exit 8,12,16 bank(s) active h l deselect or nop active power down entry 11,13,14 reading h l deselect or nop power down entry 11,13,14,17 writing h l deselect or nop power down entry 11,13,14,17 precharging h l deselect or nop power down entry 11,13,14,17 refreshing h l deselect or nop precharge power down entry 11 all banks idle h l deselect or nop precharge power down entry 11,13,14,1 8 h l refresh self refresh 9,13,18 any other state refer to section 9 .1 command truth table on p age 9 4 for more detail with all command signals 10 note s : 1. cke (n) is the logic state of cke at clock edge n; cke (n - 1) was the state of cke at the previous clock edge . 2. current state is defined as the state of the ddr3 sdram immediately prior to clock edge n . 3. command (n) is the command registered at clock edge n, and action (n) is a result of command (n), odt is not included here . 4. all states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document . 5. the state of odt does not affect the states described in this table. the odt function is not available during self refresh . 6. during any cke transition (registration of cke h - >l or cke l - >h) the cke le vel must be maintained until 1nck prior to t cke min being satisfied (at which time cke may transition again) . 7. deselect and nop are defined in the command truth table . 8. on self refresh exit deselect or nop commands must be issued on every clock edge occurring during the t xs period. read or odt commands may be issued only after t xsdll is satisfied . 9. self refresh mode can only be entered from the all banks idle state . 10. must be a legal command as defined in the command truth table . 11. valid commands for power down ent ry and exit are nop and deselect only . 12. valid commands for self refresh exit are nop and deselect only . 13. self refresh can not be entered during read or write operations . for a detailed list of restrictions see section 8 .16 self - refresh operation on page 6 7 and see section 8 .17 power - down modes on page 6 9 . 14. the power down does not perform any refresh operations. 15. x means d on't care (including floating around v ref ) in self refresh and power down. it also applies to address pins. 16. v ref (both v refdq and v refca ) must be maintained during self refresh operation. v refdq supply may be turned off and v refdq may take any value between v ss and v dd during self refresh operation, provided that v refdq is valid and stable prior to cke going back high and that first write operation or first write leveling activity may not occur earlier than 512 nck after exit from self refresh. 17. if all banks are closed at the conclusion of the read, write or precharge command, then precharge power down is entered, otherwise active power down is entered. 18. idle state is defined as all banks are closed (t rp , t dal , etc. satisfied), no data bursts are in progress, cke is high, and all timings from previous operations are satisfied (t mrd , t mod , t rfc , t zqinit , t zq oper, t zqcs , etc.) as well as all self refresh exit and power down exit parameters are satisfied (t xs , t xp , t xpdll , etc) .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 97 - 9.3 simplified state diagram this simplified state diagram is intended to provide an overview of the possible state transitions and the commands to control them. in particular, situations involving more than one bank, the enabling or disabling of on - die termination, and some other events are not captured in full detail . figure 8 7 C simplified state diagram table 1 6 C state diagram command definitions abbreviation function abbreviation function abbreviation function act active read rd, rds4, rds8 pde enter power - down pre precharge read a rda, rdas4, rdas8 pdx exit power - down pre a precharge all write wr, wrs4, wrs8 sre self - refresh entry mrs mode register set write a wra, wras4, wras8 srx self - refresh exit ref refresh reset start reset procedure mpr multi - purpose register zqcl zq calibration long zqcs zq calibration short - - note: see command truth table on page 9 4 for more details p o w e r o n r e s e t p r o c e d u r e i n i t i a l i z a t i o n m r s , m p r , w r i t e l e v e l i n g s e l f r e f r e s h z q c a l i b r a t i o n i d l e r e f r e s h i n g a c t i v e p o w e r d o w n a c t i v a t i n g p r e c h a r g e p o w e r d o w n b a n k a c t i v e w r i t i n g w r i t i n g r e a d i n g r e a d i n g p r e c h a r g i n g f r o m a n y s t a t e r e s e t z q c l m r s s r e s r x r e f p d e p d x a c t z q c l , z q c s p d x p d e w r i t e r e a d r e a d a w r i t e a w r i t e a r e a d a p r e , p r e a p r e , p r e a p r e , p r e a w r i t e a r e a d w r i t e w r i t e r e a d c k e _ l c k e _ l c k e _ l a u t o m a t i c s e q u e n c e c o m m a n d s e q u e n c e p o w e r a p p l i e d
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 98 - 10. elec t rical characteristics 10.1 a bsolute m aximum r atings parameter symbol rating unit note s voltage on v dd p in relative to v ss v dd - 0.4 ~ 1.975 v 1, 3 voltage on v ddq pin relative to v ss v ddq - 0.4 ~ 1.975 v 1, 3 voltage on any pin relative to v ss v in , v out - 0.4 ~ 1.975 v 1 s torage temperature t stg - 55 ~ 1 0 0 c 1, 2 note s : 1. stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. exposure to absolute maximum rating condition s for extended periods may affect reliability . 2. storage temperature is the case surface temperature on the center/top side of the dram. for the measurement conditions, please refer to jesd51 - 2 standard . 3. v dd and v ddq must be within 300 mv of each other at al l times . v refdq and v refca must not greater than 0.6 x v ddq . when v dd and v ddq are less than 500 mv , v refdq and v refca may be equal to or less than 300 mv . 10.2 operating temperature condition parameter symbol rating unit note s commercial operating temperature range (for - 11/ - 12/ - 15) t oper 0 ~ 8 5 c 1, 2 0 ~ 9 5 c 1, 2, 4 industrial operating temperature range (for - 12i/15i) t oper - 4 0 ~ 8 5 c 1, 3 - 4 0 ~ 9 5 c 1, 3, 4 note s : 1. operating temperature t oper is the case surface temperature on the center / top side of the dram. for measurement conditions, please refer to the jedec document jesd51 - 2 . 2. during operation, the dram case temperatu re must be maintained between 0 to 95c for commercial parts under all specification parameters . 3. during operation, the dram case temperature must be maintained between - 40 to 95c for industrial parts under all specification parameters 4. some application s require operation of the 85 c < t cas e 9 5 c operating temperature. full specifications are provided in this range, but the following additional conditions apply: (a) refresh commands have to be doubled in frequency, therefore reducing the refresh interval t refi to 3.9 s . (b) if self - refre sh operation is required in 85 c < t cas e 9 5 c operating temperature range , than it is mandatory to either use the manual self - refresh mode with extended temperature range capability (mr2 a6 = 0 b and mr2 a7 = 1 b ) or enable the auto self - refresh mode (asr) (mr2 a6 = 1 b , mr2 a7 is don't care ). 10.3 dc & ac operating conditions 10.3.1 recommended dc operating conditions sym . parameter m in. typ. max. unit note s v dd supply voltage 1. 425 1. 5 1. 575 v 1 , 2 v ddq supply voltage for output 1. 425 1. 5 1. 575 v 1 , 2 r zq external calibration resistor connected from zq ball to ground 237 . 6 240.0 242 . 4 3 note s : 1. under all conditions v ddq must be less than or equal to v dd . 2. v ddq tracks with v dd . ac parameters are measured with v dd and v dd q tied together . 3. the external calibration resistor rzq can be time - shared among drams in special applications .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 99 - 10.4 input and output leakage currents sym bol parameter min . max . unit note s i il input leakage current ( 0v v in v dd ) - 2 2 a 1 i ol output leakage current (output disabled, 0v v out v ddq ) - 5 5 a 2 note s : 1. a ll other ball s not under test = 0 v . 2. all dq , dqs and dqs # are in high - impedance mode . 10.5 interface test conditions figure 8 8 represents the effective reference load of 25 ohms used in defining the relevant ac timing parameters of the device as well as output slew rate measurements. it is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. system designers should use ibis or other simulation tools to correlate the timing referen ce load to a system environment. manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics . figure 8 8 C reference load for ac timings and output slew rates the timing reference points are the idealized input and output nodes / terminals on the outside of the packaged sdram device as they would appear in a schematic or an ibis model. the output timing reference voltage level for single ended signals is the cross point with v tt . the output timing reference voltage level for differential signals is the cross point of the true (e.g. dqsl, dqsu ) and the complement (e.g. dqs l #, dqs u # ) signal . d q d q s d q s # t i m i n g r e f e r e n c e p o i n t v t t = v d d q / 2 2 5 v d d q d u t c k , c k #
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 100 - 10.6 dc and ac input measurement levels 10.6.1 dc and ac input levels for single - ended command and address signals table 17 C single - ended dc and ac input levels for command and address parameter sym bol ddr3 - 1333 , ddr3 - 1600 ddr3 - 1 8 66 unit notes min. max. min. max. dc input logic high v ih .ca ( dc 100 ) v ref + 0.1 00 v dd v ref + 0.1 00 v dd v 1 , 5 dc input logic low v i l.ca ( dc 100 ) v ss v ref - 0.1 00 v ss v ref - 0.1 00 v 1 , 6 a c input logic high v ih .ca ( ac175 ) v ref + 0.1 75 note 2 - - v 1, 2 , 7 a c input logic low v i l.ca ( ac175 ) note 2 v ref - 0.1 75 - - v 1, 2 , 8 a c input logic high v ih .ca ( ac150 ) v ref + 0.1 50 note 2 - - v 1, 2, 7 a c input logic low v i l.ca ( ac150 ) note 2 v ref - 0.1 50 - - v 1, 2, 8 a c input logic high v ih .ca ( ac135 ) - - v ref + 0.1 35 note 2 v 1, 2, 7 a c input logic low v i l.ca ( ac135 ) - - note 2 v ref - 0.1 35 v 1, 2, 8 a c input logic high v ih .ca ( ac125 ) - - v ref + 0.1 25 note 2 v 1, 2, 7 a c input logic low v i l.ca ( ac125 ) - - note 2 v ref - 0.1 25 v 1, 2, 8 reference voltage for add , cmd inputs v ref ca (dc) 0.49 x v dd 0.51 x v dd 0.49 x v dd 0.51 x v dd v 3, 4 note s : 1. for input only pins except reset#. v ref = v refca(dc) . 2. see section 10 .12 overshoot and undershoot specifications on page 12 1 . 3. the ac peak noise on v ref may not allow v ref to deviate from v ref ca (dc) by more than 1% v dd (for reference: approx. 15 mv). 4. for reference: approx. v dd /2 15 mv . 5. v ih(dc) is used as a simplified symbol for v ih.ca(dc100) . 6. v il(dc) is used as a simplified symbol for v il.ca(dc100) . 7. vih (ac) is used as a simplified symbol for v ih.ca(ac175) , v ih.ca(ac150) , v ih.ca(ac135) , and v ih.ca(ac125) ; v ih.ca(ac175) value is used when v ref + 0.175v is referenced, v ih.ca(ac150) value is used when v ref + 0.150v is referenced, v ih.ca(ac135) value is used when v ref + 0.135v is referenced, and v ih.ca(ac125) value is used when v ref + 0.125v is referenced. 8. v il(ac) is used as a simplified symbol fo r v il.ca(ac175) , v il.ca(ac150) , v il.ca(ac135) and v il.ca(ac125) ; v il.ca(ac175) value is used when v ref - 0.175v is referenced, v il.ca(ac150) value is used when v ref - 0.150v is referenced, v il.ca(ac135) value is used when v ref - 0.135v is referenced, and v il.ca(ac125) value is used when v ref - 0.125v is referenced.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 101 - 10.6.2 dc and ac input levels for single - ended data signals table 18 C single - ended dc and ac input levels for dq and dm parameter sym bol ddr3 - 1333 , ddr3 - 1600 ddr3 - 1 8 66 unit notes min. max. min. max. dc input logic high v ih .dq ( dc100 ) v ref + 0.1 00 v dd v ref + 0.1 00 v dd v 1, 5 dc input logic low v i l.dq ( dc100 ) v ss v ref - 0.1 00 v ss v ref - 0.1 00 v 1, 6 a c input logic high v ih .dq ( ac150 ) v ref + 0.1 50 note 2 - - v 1, 2, 7 a c input logic low v i l.dq ( ac150 ) note 2 v ref - 0.1 50 - - v 1, 2, 8 a c input logic high v ih .dq ( ac135 ) v ref + 0.1 35 note 2 v ref + 0.1 35 note 2 v 1, 2, 7 a c input logic low v i l.dq ( ac135 ) note 2 v ref - 0.1 35 note 2 v ref - 0.1 35 v 1, 2, 8 reference voltage for dq , dm inputs v refdq(dc) 0.49 x v dd 0.51 x v dd 0.49 x v dd 0.51 x v dd v 3, 4 note s : 1. v ref = v ref dq (dc) . 2. see section 10 .1 2 overshoot and undershoot specifications on page 12 1 . 3. the ac peak noise on v ref may not allow v ref to deviate from v refdq(dc) by more than 1% v dd (for reference: approx. 15 mv). 4. for reference: approx. v dd /2 15 mv . 5. v ih(dc) is used as a simplified symbol for v ih.dq(dc100) . 6. v il(dc) is used as a simplified symbol for v il.dq(dc100) . 7. v ih (ac) is used as a simplified symbol for v ih.dq(ac150) , and v ih.dq(ac1 3 5) ; v ih.dq(ac150) value is used when v ref + 0.150v is referenced, and v ih.dq(ac1 3 5) value is used when v ref + 0.1 3 5v is referenced. 8. v il(ac) is used as a simplified symbol for v il.dq(ac150) , and v il.dq(ac1 3 5) ; v il.dq(ac150) value is used when v ref - 0.150v is referenced, and v il.dq(ac1 3 5) value is used when v ref - 0.1 3 5v is re ferenced.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 102 - the dc - tolerance limits and ac - noise limits for the reference voltages v refca and v refdq are illustrated in figure 8 9 . it shows a valid reference voltage v ref (t) as a function of time. (v ref stands for v refca and v refdq likewise). v ref(dc) is the linear average of v ref (t) over a very long period of time (e.g., 1 sec). this average has to meet the min/max requirements in table 17 . furthermore v ref (t) may temporarily deviate from v ref(dc) by no more than 1% v dd . figure 8 9 C illustration of v ref(dc) tolerance and v ref ac - noise limits the voltage levels for setup and hold time measurements v ih(ac) , v ih(dc) , v il(ac) , and v il(dc) are dependent on v r ef . v r ef shall be understood as v r ef (dc) , as defined in figure 8 9 . this clarifies that dc - variations of v r ef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. system timing and voltage budgets need to account for v r ef (dc) deviations from the optimum position within the data - eye of the input signals. this also clarifies that the dram setup/hold specification and derating values need to include time and voltage associated with v r ef ac - noise. timing and voltage effects due to ac - noise on v r ef up to the specified limit ( 1% of v dd ) are included in dram timings and their associated deratings . v r e f ( d c ) m a x v r e f ( d c ) m i n v d d / 2 v d d v s s v o l t a g e t i m e v r e f ( d c ) v r e f ( t ) v r e f a c - n o i s e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 103 - 10.6.3 differential swing requirements for clock (ck - ck#) and strobe (dqs - dqs#) table 19 C differential dc and ac input level parameter sym bol ddr3 - 1 333 , ddr3 - 1 600 & ddr3 - 1 866 unit notes min. max. differential input high v ih diff +0. 200 note 3 v 1 differential input low v i l diff note 3 - 0. 200 v 1 differential input high ac v ih diff ( ac ) 2 x (v ih(ac) - v ref ) note 3 v 2 differential input low ac v i l diff ( ac ) note 3 2 x (v i l (ac) - v ref ) v 2 note s : 1. used to define a differential signal slew - rate . 2. for ck - ck# use v ih.ca(ac) /v il.ca(ac) of add/cmd and v refca ; for dqsl, dqsl#, dqsu , dqsu# us e v ih. dq (ac) /v il. dq (ac) of dqs and v refdq ; if a reduced ac - high or ac - low level is used for a signal group, then the reduced level applies also here . 3. these values are not defined; however, the single - ended signals ck, ck#, dqsl, dqsl#, dqsu, dqsu# need to be within the respective limits (v ih(dc) max, v il(dc)min ) for single - ended signals as well as the limitations for overshoot and undershoot. refer to section 10 .12 overshoot and undershoot specifications on page 12 1 . figure 90 C definition of differential ac - swing and time above ac - level t dvac t d v a c t d v a c h a l f c y c l e v i h d i f f ( a c ) m i n v i h d i f f m i n 0 v i l d i f f m a x v i l d i f f ( a c ) m a x d i f f e r e n t i a l i n p u t v o l t a g e ( i . e . d q s C d q s # , c k - c k # ) t i m e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 104 - table 20 C allowed time before ringback (t dvac ) for ck - ck# and dqs - dqs# slew rate [v/ns] ddr3 - 1333/1600 ddr3 - 1866 t dvac [ps] @ v ih/ldiff(ac) = 350mv t dvac [ps] @ v ih/ldiff(ac) = 3 0 0mv t dvac [ps] @ v ih/ldiff(ac) = 3 0 0mv t dvac [ps] @ v ih/ldiff(ac) = (ck - ck#) only m in . m ax . m in . m ax . m in . m ax . m in . m ax . > 4.0 75 - 175 - 134 - 139 - 4.0 57 - 170 - 134 - 139 - 3.0 50 - 167 - 112 - 118 - 2.0 38 - 1 19 - 67 - 77 - 1.8 34 - 1 0 2 - 52 - 63 - 1.6 29 - 8 1 - 33 - 45 - 1.4 22 - 54 - 9 - 23 - 1.2 note - 1 9 - note - note - 1.0 note - note - note - note - < 1.0 note - note note - note - note: rising input differential signal shall become equal to or greater than v ih diff ( ac ) level and falling input differential signal shall become equal to or less than v il diff ( ac ) level. 10.6.4 single - ended requirements for differential signals each individual component of a different ial signal ( ck, dqsl, dqsu, ck#, dqsl#, dqsu# ) has also to comply with certain requirements for single - ended signals. ck and ck# have t o approximately reach v seh min / v sel max (approximately equal to the ac - levels (v ih .ca (ac) / v il .ca (ac) ) for add/cmd signals) in every half - cycle. dqsl, dqsu, dqs l #, dqs u # have to reach v seh min / v sel max (approximately the ac - levels (v ih .dq (ac) / v il .dq (ac) ) for dq signals) in every half - cycle preceding and following a valid transition. note that the appl icable ac - levels for add/cmd and dqs might be differ ent per speed - bin etc. e.g., if v ih .ca (ac 1 50 ) /v i l.ca (ac 1 50 ) is used for add/cmd signals, then the se ac - levels apply also for the single - ended signals ck and ck# . table 2 1 C single - ended levels for ck, dqsl, dqsu, ck#, dqsl# or dqsu# parameter sym . ddr3 - 1 333 , ddr3 - 1 600 & ddr3 - 1 866 unit notes min. max. single - ended high level for strobes v seh (v dd /2) + 0.1 75 note 3 v 1, 2 single - ended high level for ck, ck# (v dd /2) + 0.1 75 note 3 v 1, 2 single - ended low level for strobes v sel note 3 (v dd /2) - 0.1 75 v 1, 2 single - ended low level for ck, ck# note 3 (v dd /2) - 0.1 75 v 1, 2 note s : 1. for ck, ck# use v ih.ca(ac) / v il. . ca(ac) of add/cmd; for strobes ( dqsl, dqsl#, dqsu, dqsu# ) use v ih. dq (ac) / v il. dq (ac) of dqs . 2. v ih. dq (ac) / v il. dq (ac) for dqs is based on v refdq ; v ih.ca(ac) / v il . ca(ac) for add/cmd is based on v refca ; if a reduced ac - high or ac - low level is used for a signal group, then the reduced level applies also here . 3. these values are not defined; however, the single - ended signals ck, ck#, dqsl, dqsl#, dqsu, dqsu# need to be within the respective limits (v ih(dc) max, v il(dc)min ) for single - ended signals as well as the limitations for overshoot and undershoot. ref er to section 10 .12 overshoot and undershoot specifications on page 12 1 .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 105 - figure 9 1 C single - ended requirement for differential signals note that, while add/cmd and dq signal requirements are with respect to v ref , the single - ended components of differential signals have a requirement with respect to v dd / 2; this is nominally the same. the transition of single - ended sign als through the ac - levels is used to measure setup time. for single - ended components of differential signals the requirement to reach v sel max, v seh min has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. 10.6.5 dif ferential input cross point voltage to guarantee tight setup and hold times as well as output skew parameters wi th respect to clock and strobe, each cross point voltage of differential input signals (ck, ck# and dqs, dqs#) must meet the requirements in tab le 2 2 . the differential input cross point voltage v ix is measured from the actual cross point of true and complement signals to the midlevel between of v dd and v ss . figure 9 2 C v ix definition v d d o r v d d q v s e h m i n v d d / 2 o r v d d q / 2 v s e l m a x v s s o r v s s q v s e h v s e l c k o r d q s t i m e v i x v i x v i x v d d / 2 c k # , d q s # c k , d q s v d d v s s v s e h v s e l
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 106 - table 2 2 C cross point voltage for differential input signals (ck, dqs) parameter sym bol ddr3 - 1 333 , ddr3 - 1 600 & ddr3 - 1 866 unit notes min. max. differential input cross point voltage v ix (ck) - 150 150 m v 2 relative to v dd /2 for ck, ck# - 1 75 1 75 m v 1 differential input cross point voltage v ix(dqs) - 150 150 mv 2 relative to v dd /2 for dqs, dqs# note: 1. extended range for v ix is only allowed for clock and if single - ended clock input signals ck and ck# are monotonic with a single - ended swing v sel / v seh of at least v dd /2 250 mv, and when the differential slew rate of ck - ck# is larger than 3 v/ns . refer to table 2 1 for v sel and v seh standard values. 2. the relation between v ix min/max and v sel /v seh should satisfy following. (v dd /2) + v ix (min) - vsel 25mv v seh - ((v dd /2) + v ix (max)) 25mv 10.6.6 slew rate definitions for single - ended input signals see section 10 .16 . 4 address / command setup, hold and derating on page 1 4 9 for sin gle - ended slew rate definitions for address and command signals. see section 10 .1 6. 5 data setup, hold and slew rate derating on page 1 5 6 for single - ended slew rate definitions for data signals . 10.6.7 slew rate definitions for differential input signals input slew rate for differential signals (ck, ck# and dqs, dqs#) are d efined and measured as shown i n table 2 3 and figure 9 3 . table 2 3 C differential input slew rate definition description measured defined by from to differential input slew rate for rising edge (ck - ck# and dqs - dqs#) v il .diff max v i h.diff m in [v i h.diff m in - v il .diff max ] / t r. diff differential input slew rate for falling edge (ck - ck# and dqs - dqs#) v i h.diff m in v il .diff max [v i h.diff m in - v il .diff max ] / t f. diff note: the differential signal (i.e., ck - ck# and dqs - dqs#) must be linear between these thresholds figure 9 3 C differential input slew rate definition for dqs, dqs# and ck, ck# v i h . d i f f m i n 0 v i l . d i f f m a x t f . d i f f t r . d i f f d i f f e r e n t i a l i n p u t v o l t a g e ( d q s - d q s # ; c k - c k # )
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 107 - 10.7 dc and ac output measurement levels table 2 4 C single - ended dc and ac output levels parameter sym bol value unit note s dc output high measurement level (for iv curve linearity) v oh(dc) 0.8 x v ddq v dc output mid measurement level (for iv curve linearity) v o m (dc) 0. 5 x v ddq v dc output low measurement level (for iv curve linearity) v o l (dc) 0. 2 x v ddq v ac output high measurement level ( for output slew rate ) v oh( a c) v tt + 0.1 x v ddq v 1 ac output low measurement level ( for output slew rate ) v o l ( a c) v tt - 0.1 x v ddq v 1 note: 1. the swing of 0.1 v ddq is based on approximately 50% of the static single - ended output high or low swing with a driver impedance of 34 and an effective test load of 25 to v tt = v ddq /2 . table 2 5 C differential dc and ac output levels parameter sym bol value unit note s min. m ax . ac differential output high measurement level ( for output slew rate ) v oh.diff(ac) + 0. 2 x v ddq v 1 ac differential output low measurement level ( for output slew rate ) v o l .diff(ac) - 0. 2 x v ddq v 1 note: 1. the swing of 0. 2 v ddq is based on approximately 50% of the static single - ended output high or low swing with a driver impedance of 34 and an effective test load of 25 to v tt = v ddq /2 at each of the differential outputs . 10.7.1 output slew rate definition and requirements the slew rate definition depends if the signal is single - ended or differential. for the relevant ac output reference levels see above table 24 and table 25. table 2 6 C output slew rate parameter symbol ddr3 - 1 333 , ddr3 - 1 600 ddr3 - 1866 unit notes min. max. min. max. single - ended output slew rate srqse 2.5 5 2.5 5 * 1 v/ns 1, 2, 3 differential output slew rate srq diff 5 10 5 12 v/ns 2, 3 note s : 1. in two cases, a maximum slew rate of 6 v/ns applies for a single dq signal within a byte lane. - case 1 is defined for a single dq signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining dq signals in the same byte lane are static (i.e they stay at either high or low). - case 2 is de fined for a single dq signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining dq signals in the same byte lane are switching into the opposite direction (i.e. from low to high or hi gh to low respectively). for the remaining dq signal switching into the opposite direction, the regular maximum limit of 5 v/ns applies. 2. background for symbol nomenclature: sr: slew rate; q: query output (like in dq, which stands for data - in, query - output) ; se: single - ended signals ; diff: differential signals . 3. for r on = rzq/7 settings only .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 108 - 10.7.1.1 single ended output slew rate with the reference load for timing measurements, output slew rate for fall ing and rising edges is defined and measured between v ol(ac) and v oh(ac) for single ended signals as shown in table 2 7 and figure 9 4 . table 2 7 C single - ended output slew rate definition description measured defined by from to single - ended output slew rate for rising edge v ol(ac) v o h (ac) [v oh(ac) - v ol(ac) ] / trse single - ended output slew rate for falling edge v o h (ac) v ol(ac) [v oh(ac) - v ol(ac) ] / tfse note: output slew rate is verified by design and characterization, and may not be subject to production test. figure 9 4 C single - ended output slew rate definition v o h ( a c ) v t t v o l ( a c ) t f s e t r s e s i n g l e - e n d e d o u t p u t v o l t a g e ( i . e . d q )
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 109 - 10.7.1.2 differential output slew rate with the reference load for timing measurements, output slew rate for fall ing and rising edges is defined and measured between v ol . diff ac) and v oh . diff (ac) for differential signals as shown in table 2 8 and figure 9 5 . table 2 8 C differential output slew rate definition description measured defined by from to differential output slew rate for rising edge v o l .diff(ac) v oh.diff(ac) [v oh.diff(ac) - v o l .diff(ac) ] / tr diff differential output slew rate for falling edge v oh.diff(ac) v o l .diff(ac) [v oh.diff(ac) - v o l .diff(ac) ] / t f diff note: output slew rate is verified by design and characterization, and may not be subject to production test . figure 9 5 C differential output slew rate definition v o h . d i f f ( a c ) 0 v o l . d i f f ( a c ) t f d i f f t r d i f f d i f f e r e n t i a l o u t u t v o l t a g e ( d q s - d q s # )
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 110 - 10.8 34 ohm output driver dc electrical characteristics a functional representation of the output buffer is shown in figure 9 6 . output driver impedance ron is selected by bits d . i . c a1 and a5 in the mr1 register. two different values can be selected via mr1 settings : ron 34 = r zq / 7 (nominal 34.3 10% with nominal r zq = 240 ) ron 40 = r zq / 6 (nominal 40 . 0 10% with nominal r zq = 240 ) the individual pull - up and pull - down resistors ( ron pu and ron pd ) are defined as follows: ron pu = under the condition that ron pd is turned off ron pd = under the condition that ron p u is turned off figure 9 6 C output driver: definition of voltages and currents out out ddq i v - v out out i v v s s q d q v d d q v o u t o u t p u t d r i v e r i p d r o n p d r o n p u i p u t o o t h e r c i r c u i t r y l i k e r c v , . . . i o u t c h i p i n d r i v e m o d e
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 111 - table 29 C output driver dc electrical characte ris tics, assuming rzq = 240 ; entire operating temperature range; after proper zq calibration r on nom resistor v out min. nom. max. unit notes 34 ron 34 pd v oldc = 0.2 v ddq 0.6 1.0 1.1 rzq / 7 1, 2, 3 v o m dc = 0. 5 v ddq 0.9 1.0 1.1 rzq / 7 1, 2, 3 v o h dc = 0. 8 v ddq 0.9 1.0 1.4 rzq / 7 1, 2, 3 ron 34 p u v oldc = 0.2 v ddq 0.9 1.0 1.4 rzq / 7 1, 2, 3 v o m dc = 0. 5 v ddq 0.9 1.0 1.1 rzq / 7 1, 2, 3 v o h dc = 0. 8 v ddq 0.6 1.0 1.1 rzq / 7 1, 2, 3 40 ron 40 pd v oldc = 0.2 v ddq 0.6 1.0 1.1 rzq / 6 1, 2, 3 v o m dc = 0. 5 v ddq 0.9 1.0 1.1 rzq / 6 1, 2, 3 v o h dc = 0. 8 v ddq 0.9 1.0 1.4 rzq / 6 1, 2, 3 ron 40 p u v oldc = 0.2 v ddq 0.9 1.0 1.4 rzq / 6 1, 2, 3 v o m dc = 0. 5 v ddq 0.9 1.0 1.1 rzq / 6 1, 2, 3 v o h dc = 0. 8 v ddq 0.6 1.0 1.1 rzq / 6 1, 2, 3 mismatch between pull - up and pull - down, mm pupd v o m dc = 0. 5 v ddq - 10 +10 % 1, 2, 4 note s : 1. the tolerance limits are specified after calibration with stable voltage and temperature. for the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity. 2. the tolerance limits are specified under the condition that v ddq = v dd and that v ssq = v ss . 3. pull - down and pull - up output dr iver impedances are recommended to be calibrated at 0.5 v ddq . other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 v ddq and 0.8 v ddq . 4. measurement definition for mismatch between pull - up and pull - dow n, mm pupd : measure ron pu and ron pd , both at 0.5 * v ddq : mm pu pd = x 100% nom pd pu ron ron - ron
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 112 - 10.8.1 output driver temperature and voltage sensitivity if temperature and/or voltage change after calibration, the tolerance limits widen according to table 30 and table 31. t = t - t(@calibration); v= v ddq - v ddq (@calibration); v dd = v ddq note: dr on dt and dr on dv are not subject to production test but are verified by design and characterization . table 30 C output driver sensitivity definition min. max. unit ron pu @ v oh dc 0.6 - dr on dth*| t| - dr on dvh*| v| 1.1 + dr on dth*| t| + dr on dvh*| v| rzq / 7 ron@ v om dc 0. 9 - dr on dt m *| t| - dr on dv m *| v| 1.1 + dr on dt m *| t| + dr on dv m *| v| rzq / 7 ron pd @ v ol dc 0.6 - dr on dt l *| t| - dr on dv l *| v| 1.1 + dr on dt l *| t| + dr on dv l *| v| rzq / 7 table 31 C output driver voltage and temperature sensitivity speed bin ddr3 - 1333 ddr3 - 1 600 & ddr3 - 1 866 unit min. max. min. max. dr on dt m 0 1.5 0 1.5 %/c dr on d vm 0 0.15 0 0.13 %/mv dr on dt l 0 1.5 0 1.5 %/c dr on d vl 0 0.15 0 0.13 %/mv dr on dt h 0 1.5 0 1.5 %/c dr on d vh 0 0.15 0 0.13 %/mv note: these parameters may not be subject to production test. they are verified by design and characterization.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 113 - 10.9 on - die termination (odt) levels and characteristics 10.9.1 odt levels and i - v characteristics on - die termination effective resistance r tt is defined by bits a9, a6 and a2 of the mr1 register. odt is applied to the dq, dm and dqs/dqs# pins. a functional representation of the on - die termination is shown in figure 9 7 . the individual pull - up and pull - down resistors ( r tt pu and r tt pd ) are defined as follows: r tt pu = under the condition that r tt pd is turned off r tt pd = under the condition that r tt p u is turned off figure 9 7 C on - die termination: definition of voltages and currents out out ddq i v v - out out i v v s s q d q v d d q v o u t o d t i p d r t t p d r t t p u i p u t o o t h e r c i r c u i t r y l i k e r c v , . . . i o u t c h i p i n t e r m i n a t i o n m o d e i o u t = i p d - i p u
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 1 14 - 10.9.2 odt dc electrical characteristics an overview about the specification requirements for r tt and v m is provided in table 32 . table 32 C odt dc impedance and mid - level requirements mr1 a9, a6, a2 r tt resistor v out m in . n om . m ax . u nit n otes 0, 1, 0 120 r tt 120 0.9 1.0 1.6 r zq /2 1, 2, 3, 4 0, 0, 1 6 0 r tt 6 0 0.9 1.0 1.6 r zq / 4 1, 2, 3, 4 0, 1, 1 4 0 r tt 4 0 v il(ac) to v ih(ac) 0.9 1.0 1.6 r zq / 6 1, 2, 3, 4 1, 0, 1 3 0 r tt 3 0 0.9 1.0 1.6 r zq / 8 1, 2, 3, 4 1, 0, 0 2 0 r tt 2 0 0.9 1.0 1.6 r zq / 1 2 1, 2, 3, 4 deviation of v m with respect to v ddq /2, v m - 5 +5 % 1, 2, 3, 4 , 5 note s : 1. with rzq = 240 . 2. the tolerance limits are specified after calibration with stable voltage a nd temperature. for the behavio r of the tolerance limits if temperature or voltage changes after calibration, see the following section odt temperature and voltage sensitivity . 3. the tolerance limits are specified under the condition that v ddq = v dd and that v ssq = v ss . 4. measurement definition for r tt : apply v ih(ac) to pin under test and measure current i( v ih(ac) ), then apply v i l (ac) to pin under test and measure current i( v i l (ac) ) respectively. calculate r tt as follows: r tt = [ v ih(ac) - v il(ac) ] / [ i ( v ih(ac) ) - i ( v il(ac) )] 5. measurement d efinition for v m and v m : measure voltage (v m ) at test pin (midpoint) with no load . calculate v m as follows: v m = (2 v m / v ddq - 1) 100% . 10.9.3 odt temperature and voltage sensitivity if temperature and/or voltage change after calibration, the tolerance limits widen according to table 3 3 and table 3 4 . the following definitions are used: t = t - t ( @calibration ) ; v = v ddq - v ddq ( @calibration ) ; v dd = v ddq table 3 3 C odt sensitivity definition sym bol min. max. unit r tt 0.9 - dr tt dt |t| - dr tt dv |v| 1.6 + dr tt dt |t| + dr tt dv |v| rzq/2,4,6,8,12 table 3 4 C odt voltage and temperature sensitivity sym bol min. max. unit dr tt dt 0 1.5 %/c dr tt d v 0 0.15 %/mv note: these parameters may not be subject to production test. they are verified by design and characterization
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 115 - 10.9.4 design guide lines for r tt pu and r tt pd table 35 provides an overview of the odt dc electrical pull - up and pull - down characteristics. the values are not spe cification requirements, but can be used as design guide lines . table 35 C odt dc electrical pull - down and pull - up characteristics, assuming r zq = 240 1% entire operating temperature range; after proper zq calibration mr1 a9, a6, a2 r tt resistor v out min. nom. max. unit notes 0, 1, 0 120 , r tt 120pd240 , v oldc = 0.2 v ddq 0.6 1.0 1.1 r zq /tisf pupd 1, 2, 3, 4, 5 0, 0, 1 60 , r tt 60pd120 , v omdc = 0.5 v ddq 0.9 1.0 1.1 r zq /tisf pupd 1, 2, 3, 4, 5 0, 1, 1 40 , r tt 40pd80 , v ohdc = 0.8 v ddq 0.9 1.0 1.4 r zq /tisf pupd 1, 2, 3, 4, 5 1, 0, 1 30 , r tt 30pd60 , 1, 0, 0 20 r tt 20pd40 r tt 120p u 240 , v oldc = 0.2 v ddq 0.9 1.0 1.4 r zq /tisf pupd 1, 2, 3, 4, 5 r tt 60p u 120 , v omdc = 0.5 v ddq 0.9 1.0 1.1 r zq /tisf pupd 1, 2, 3, 4, 5 r tt 40p u 80 , v ohdc = 0.8 v ddq 0.6 1.0 1.1 r zq /tisf pupd 1, 2, 3, 4, 5 r tt 30p u 60 , r tt 20p u 40 note s : 1. tisf pupd : termination impedance scaling factor for pull - up and pull - down path: tisf pupd = 1 for r tt 120pu/pd240 tisf pupd = 2 for r tt 60pu/pd120 tisf pupd = 3 for r tt 40pu/pd 80 tisf pupd = 4 for r tt 30pu/pd60 tisf pupd = 6 for r tt 20pu/pd40 2. the tolerance limits are specified after calibration with stable voltage a nd temperature. for the behavio r of the tolerance limits if temperature or voltage changes after cal ibration, see the above section odt temperature and voltage sensitivity . 3. the tolerance limits are specified under the condition that v ddq = v dd and that v ssq = v ss . 4. pull - down and pull - up odt resistors are recommended to be calibrated at 0.5 v ddq . other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 v ddq and 0.8 v ddq . 5. not a specification requirement, but a design guide line.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 116 - 10.10 odt timing definitions 10.10.1 test load for odt timings different than for timing measurements, the reference load for odt timings is defined in figure 9 8 . figure 9 8 C odt timing reference load 10.10.2 odt timing definitions definitions for t aon , t aonpd , t aof , t aofpd and t adc are provided in table 3 6 and subsequent figures. measurement reference settings are provided in table 3 7 . table 3 6 C odt timing definitions s ym bol begin point definition end point definition figure t aon rising edge of ck - ck# defined by the end point of odtlon extrapolated point at v ssq figure 9 9 t aonpd rising edge of ck - ck# with odt being first registered high extrapolated point at v ssq figure 100 t aof rising edge of ck - ck#defined by the end point of odtloff end point: extrapolated point at vrtt_nom figure 10 1 t aofpd rising edge of ck - ck# with odt being first registered low end point: extrapolated point at vrtt_nom figure 10 2 t adc rising edge of ck - ck# defined by the end point of odtlcnw, odtlcwn4 or odtlcwn8 end point: extrapolated point at vrtt_wr and vrtt_nom respectively figure 10 3 table 3 7 C reference settings for odt timing measurements measured parameter rtt_nom setting rtt_wr setting v sw1 [v] v sw 2 [v] t aon r zq /4 na 0.05 0.10 r zq /12 na 0.10 0.20 t aonpd r zq /4 na 0.05 0.10 r zq /12 na 0.10 0.20 t aof r zq /4 na 0.05 0.10 r zq /12 na 0.10 0.20 t aofpd r zq /4 na 0.05 0.10 r zq /12 na 0.10 0.20 t adc r zq / 12 rzq/ 2 0.20 0.30 d q , d m d q s , d q s # t i m i n g r e f e r e n c e p o i n t v t t = v s s q r t t = 2 5 v d d q d u t c k , c k # v s s q
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 117 - figure 9 9 C definition of t aon figure 100 C definition of t aon pd c k c k # t a o n v s s q v s w 2 v s w 1 t s w 1 t s w 2 e n d p o i n t : e x t r a p o l a t e d p o i n t a t v s s q d q , d m d q s , d q s # b e g i n p o i n t : r i s i n g e d g e o f c k C c k # d e f i n e d b y t h e e n d p o i n t o f o d t l o n v t t v s s q c k c k # t a o n p d v s s q v s w 2 v s w 1 t s w 1 t s w 2 e n d p o i n t : e x t r a p o l a t e d p o i n t a t v s s q d q , d m d q s , d q s # b e g i n p o i n t : r i s i n g e d g e o f c k - c k # w i t h o d t b e i n g f i r s t r e g i s t e r e d h i g h v t t v s s q
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 118 - figure 10 1 C definition of t ao f figure 10 2 C definition of t ao f pd c k c k # t a o f v s w 2 v s w 1 t s w 1 t s w 2 e n d p o i n t : e x t r a p o l a t e d p o i n t a t v r t t _ n o m d q , d m d q s , d q s # b e g i n p o i n t : r i s i n g e d g e o f c k - c k # d e f i n e d b y t h e e n d p o i n t o f o d t l o f f v t t v s s q v r t t _ n o m c k c k # t a o f p d v s w 2 v s w 1 t s w 1 t s w 2 e n d p o i n t : e x t r a p o l a t e d p o i n t a t v r t t _ n o m d q , d m d q s , d q s # b e g i n p o i n t : r i s i n g e d g e o f c k C c k # w i t h o d t b e i n g f i r s t r e g i s t e r e d l o w v t t v s s q v r t t _ n o m
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 119 - figure 10 3 C definition of t a dc c k c k # t a d c v s w 2 v s w 1 t s w 1 t s w 2 1 e n d p o i n t : e x t r a p o l a t e d p o i n t a t v r t t _ n o m d q , d m d q s , d q s # b e g i n p o i n t : r i s i n g e d g e o f c k C c k # d e f i n e d b y t h e e n d p o i n t o f o d t l c n w v r t t _ n o m t a d c t s w 1 t s w 2 e n d p o i n t : e x t r a p o l a t e d p o i n t a t v r t t _ w r b e g i n p o i n t : r i s i n g e d g e o f c k C c k # d e f i n e d b y t h e e n d p o i n t o f o d t l c w n 4 o r o d t l c w n 8 v t t v r t t _ n o m v r t t _ w r v s s q
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 120 - 10.11 input/output capacitance parameter symbol ddr3 - 1 333 ddr3 - 1 600 ddr3 - 1 866 unit notes min. max. min. max. min. max. input/output capacitance (dq, dm, dqs, dqs#) c io 1. 4 2.5 1. 4 2.3 1. 4 2. 2 pf 1, 2, 3 input capacitance ( ck and ck# ) c ck 0.8 1.4 0.8 1.4 0.8 1. 3 pf 2, 3 delta of i nput c apacitance ( ck and ck# ) c dck 0 0.15 0 0.15 0 0.1 5 pf 2, 3, 4 delta of input/ o utput capacitance ( dqs and dqs# ) c ddqs 0 0.15 0 0.15 0 0.1 5 pf 2, 3, 5 input capacitance (ctrl, add, cmd input - only pins) c i 0.75 1.3 0.75 1.3 0.75 1. 2 pf 2, 3, 6 delta of input capacitance (all ctrl input - only pins) c di_ctrl - 0.4 0.2 - 0.4 0.2 - 0. 4 0. 2 pf 2, 3, 7, 8 delta of input capacitance (all add/cmd input - only pins) c di_add_cmd - 0.4 0.4 - 0.4 0.4 - 0. 4 0. 4 pf 2, 3, 9, 10 delta of input/output capacitance (dq, dm, dqs, dqs#) c dio - 0.5 0.3 - 0.5 0.3 - 0. 5 0. 3 pf 2, 3, 11 input/output capacitance of zq signal c zq ? 3 ? 3 ? 3 pf 2, 3, 12 note s : 1. although the dm signal s have different functions, the loading matches dq and dqs . 2. this parameter is not subject to production test. it is verified by design and characterization. the c apacitance is measured according to jep147 (procedure for measuri ng input capacitance using a vector network analyzer (vna) wi th v dd , v ddq , v ss , v ssq applied and all other pin s floating (except the ball under test, cke, reset# and odt as necessary). v dd =v ddq =1.5v, v bias =v dd /2 and on - die termination off . 3. this parameter a pplies to monolithic devices only; stacked/dual - die devices are not covered here . 4. absolute value of c ck - c ck # . 5. absolute value of c io (dqs) - c io (dqs#) . 6. c i applies to odt, cs#, cke , a0 - a13 , ba0 - ba2, ras#, cas#, we# . 7. c di_ctrl applies to odt, cs# and cke . 8. c di_ctrl =c i (ctrl) - 0.5*(c i (clk)+c i (clk#)) . 9. c di_add_cmd applies to a0 - a13 , ba0 - ba2, ras#, cas# and we# . 10. c di_add_cmd =c i (add_cmd) - 0.5*(c i (clk)+c i (clk#)) . 11. c dio =c io (dq,dm) - 0.5*(c io (dqs) +c io (dqs#) ) . 12. maximum external load capacitance on zq signal: 5 pf .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 121 - 10.12 overshoot and undershoot specifications 10.12.1 ac overshoot /undershoot specification for address and control pins: applies to a0 - a13 , ba0 - ba 2 , cs#, ras#, cas#, we#, cke, odt parameter ddr3 - 1 333 ddr3 - 1 600 ddr3 - 1 866 unit maximum peak amplitude allowed for overshoot area 0.4 0.4 0.4 v maximum peak amplitude allowed for undershoot area 0.4 0.4 0.4 v maximum overshoot area above v dd 0.4 0.33 0.28 v - ns maximum undershoot area below v ss 0.4 0.33 0.28 v - ns 10.12.2 ac overshoot /undershoot specification for clock, data, strobe and mask pins: applies to ck, ck#, dq, dqs, dqs#, dm parameter ddr3 - 1 333 ddr3 - 1 600 ddr3 - 1 866 unit maximum peak amplitude allowed for overshoot area 0.4 0.4 0.4 v maximum peak amplitude allowed for undershoot area 0.4 0.4 0.4 v maximum overshoot area above v dd q 0.15 0.13 0.11 v - ns maximum undershoot area below v ss q 0.15 0.13 0.11 v - ns figure 10 4 C ac o vershoot and u ndershoot d efinition maximum amplitude maximum amplitude overshoot area undershoot area v dd / v ddq volts ( v ) time ( ns ) v ss / v ssq
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 122 - 10.13 i dd and i ddq specification parameters and test conditions 10.13.1 i dd and i ddq measurement conditions in this section , i dd and i ddq measurement conditions such as test load and patterns are defined. figure 10 5 shows the setup and test load for i dd and i ddq measurements. ? i dd currents (such as i dd0 , i dd1 , i dd2n , i dd2nt , i dd2p0 , i dd2p1 , i dd2q , i dd3n , i dd3p , i dd4r , i dd4w , i dd5b , i dd6 , i dd6et and i dd7 ) are measured as time - averaged currents with all v dd balls of the ddr3 sdram under test tied together. any i ddq current is not included in i dd currents. ? i ddq currents (such as i ddq2nt a nd i ddq4r ) are measured as time - averaged currents with all v ddq balls of the ddr3 sdram under test tied together. any i dd current is not included in i ddq currents. attention: i ddq values cannot be directly used to calculate io power of the ddr3 sdram. they can be used to support correlation of simulated io power to actual io power as outlined in figure 10 6 . in dram module application, iddq cannot be measured separately since v dd and v ddq are using one merged - power layer in module pcb. for idd and i ddq measurements, the following definitions apply: ? 0 and low is defined as v in v ilac (max) . ? 1 and high is defined as v in v ihac (min) . ? mid - level is defined as inputs are v ref = v dd / 2 . ? timings used for i dd and i ddq measurement - loop patterns are pr ovided in table 3 8 . ? basic i dd and i ddq measurement conditions are described in table 3 9 . ? detailed i dd and i ddq measurement - loop patterns are described in table 40 through table 4 7 . ? i dd measurements are done after properly initializing the ddr3 sdram. this includes but is not limited to setting ron = rzq/7 (34 ohm in mr1); qoff = 0 b (output buffer enabled in mr1); r tt _nom = rzq/6 (40 ohm in mr1); r tt _w r = rzq/2 (120 ohm in mr2); ? attentio n: the i dd and i ddq measurement - loop patterns need to be executed at least one time before actual i dd or i ddq measurement is started. ? define d = {cs#, ras#, cas#, we# } := {high, low, low, low} ? define d# = {cs#, ras#, cas#, we# } := {high, high, high, high } table 3 8 C timings used for idd and iddq measurement - loop patterns s peed bin ddr3 - 1333 ddr3 - 1600 ddr3 - 1 866 u nit cl - n rcd - n rp 9 - 9 - 9 11 - 11 - 11 13 - 13 - 13 part number extension - 15/15i - 12/12i - 11 t ck 1.5 1.25 1.07 ns cl 9 1 1 13 nck nrcd 9 1 1 13 nck nrc 3 3 39 45 nck nras 2 4 28 32 nck nrp 9 1 1 13 nck nfaw 3 0 32 33 nck nrrd 5 6 6 nck nrfc 2 gb 107 12 8 1 50 nck
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 123 - figure 10 5 C measurement setup and test load for i dd and i ddq (optional) measurements figure 10 6 C correlation from simulated channel io power to actual channel io power supported by i ddq measurement r e s e t # c k / c k # c k e c s # r a s # , c a s # , w e # a , b a o d t z q v s s v s s q d q s , d q s # , d q , d m d d r 3 s d r a m v d d v d d q i d d i d d q ( o p t i o n a l ) v d d q / 2 r t t = 2 5 n o t e : d i m m l e v e l o u t p u t t e s t l o a d c o n d i t i o n m a y b e d i f f e r e n t f r o m a b o v e . a p p l i c a t i o n s p e c i f i c m e m o r y c h a n n e l e n v i r o n m e n t c h a n n e l i o p o w e r s i m u l a t i o n c o r r e l a t i o n c o r r e l a t i o n c h a n n e l i o p o w e r n u m b e r i d d q t e s t l o a d i d d q s i m u l a t i o n i d d q m e a s u r e m e n t
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 124 - table 3 9 C basic idd and i ddq measurement conditions sym. description i dd0 operating one bank active - precharge current cke: high; external clock: on; t ck , nrc, nras, cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: high between act and pre; command, address, bank address inputs: partially toggling according to table 40 ; data io: mid - level; dm: stable at 0; bank activity: cycling with one bank active at a time: 0,0,1,1,2,2,... (see table 40 ); output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pattern details: see table 40 i dd1 operating one bank active - read - precharge current cke: high; external clock: on; t ck , nrc, nras, nrcd, cl: see table 3 8 ; bl: 8 (1,6) ; al: 0; cs#: high between act, rd and pre; command, address, bank address inputs, data io: partially toggling according to table 4 1 ; dm: stable at 0; bank activity: cycling with one bank active at a time: 0,0,1,1,2,2,... (see table 4 1 ); output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pattern details: see table 4 1 i dd2n precharge standby current cke: high; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: stable at 1; command, address, bank address inputs: partially toggling according to table 4 2 ; data io: mid - level; dm: stable at 0; bank activity: all banks closed; output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pattern d etails: see table 4 2 i dd2nt precharge standby odt current cke: high; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: stable at 1; command, address, bank address inputs: partially toggling according to table 4 3 ; data io: mid - level; dm: stable at 0; bank activity: all banks closed; output buffer and rtt: enabled in mode registers (2) ; odt signal: toggling according to table 4 3 ; pattern details: see table 4 3 i ddq2nt precharge standby odt i ddq current same definition like for i dd2nt , however measuring i ddq current instead of i dd current i dd2p0 precharge power - down current slow exit cke: low; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: stable at 1; command, address, bank address inputs: stable at 0; data io: mid - level; dm: stable at 0; bank activity: all banks closed; output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pecharge power down mode: slow exit (3) i dd2p1 precharge power - down current fast exit cke: low; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: stable at 1; command, address, bank address inputs: stable at 0; data io: mid - level; dm: stable at 0; bank activity: all banks closed; output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pecharge power down mode: fast exit (3) i dd2q precharge quiet standby current cke: high; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: stable at 1; command, address, bank address inputs: stable at 0; data io: mid - level; dm: stable at 0; bank activity: all banks closed; output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0 i dd3n active standby current cke: high; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: stable at 1; command, address, bank address inputs: partially toggling according to table 4 2 ; data io: mid - level; dm: stable at 0; bank activity: all banks open; output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pattern details: see table 4 2 i dd3p active power - down current cke: low; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: stable at 1; command, address, bank address inputs: stable at 0; data io: mid - level; dm: stable at 0; bank activity: all banks open; output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 125 - basic idd and iddq measurement conditions , continued sym. description i dd4r operating burst read current cke: high; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1,6) ; al: 0; cs#: high between rd; command, address, bank address inputs: partially toggling according to table 4 4 ; data io: seamless read data burst with different data between one burst and the next one according to table 4 4 ; dm: stable at 0; bank activity: all banks open, rd commands cycling through banks: 0,0,1,1,2,2,... (see table 4 4 ); output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pattern details: see table 4 4 i ddq4r operating burst read i ddq current same definition like for i dd 4r , however measuring i ddq current instead of i dd current i dd4w operating burst write current cke: high; external clock: on; t ck , cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: high between wr; command, address, bank address inputs: partially toggling according to table 4 5 ; data io: seamless write data burst with different data between one burst and the next one according to table 4 5 ; dm: stable at 0; bank activity: all banks open, wr commands cycling through banks: 0,0,1,1,2,2,... (see table 4 5 ); output buffer and r tt : enabled in mo de registers (2) ; odt signal: stable at high; pattern details: see table 4 5 i dd5b burst refresh current cke: high; external clock: on; t ck , cl, nrfc: see table 3 8 ; bl: 8 (1) ; al: 0; cs#: high between ref; command, address, bank address inputs: partially toggling according to table 4 6 ; data io: mid - level; dm: stable at 0; bank activity: ref command every nrfc (see table 4 6 ); output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pattern details: see table 4 6 i dd6 self refresh current: normal temperature range t case : 0 - 85c; auto self - refresh (asr): disabled (4) ; self - refresh temperature range (srt): normal (5) ; cke: low; external clock: off; ck and ck#: low; cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#, command, address, bank address, data io: mid - level; dm: stable at 0; bank activity: self - refresh operation; output buffer and r tt : enabled in mode registers (2) ; odt signal: mid - level i dd6et self - refresh current: extended temperature range t case : 0 - 95c; auto self - refresh (asr): disabled (4) ; self - refresh temperature range (srt): extended (5) ; cke: low; external clock: off; ck and ck#: low; cl: see table 3 8 ; bl: 8 (1) ; al: 0; cs#, command, address, bank address, data io: mid - level; dm: stable at 0; bank activity: extended temperature self - refresh operation; output buffer and r tt : enabled in mode registers (2) ; odt signal: mid - level i dd7 operating bank interleave read current cke: high; external clock: on; t ck , nrc, nras, nrcd, nrrd, nfaw, cl: see table 3 8 ; bl: 8 (1,6) ; al: cl - 1; cs#: high between act and rda; command, address, bank address inputs: partially toggling according to table 4 7 ; data io: read data bursts with different data between one burst and the next one according to table 4 7 ; dm: stable at 0; bank a ctivity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see table 4 7 ; output buffer and r tt : enabled in mode registers (2) ; odt signal: stable at 0; pattern details: see table 4 7 i dd8 reset # low current reset # : l ow ; external clock: off; ck and ck#: l ow ; cke: floating; cs#, command, address, bank address, data io: floating; odt signal: floating reset # low current reading is valid once power is stable and reset has been l ow for at least 1ms note s : 1. burst length: bl8 fixed by mrs: set mr0 a[1,0]=00 b . 2. output buffer enable: set mr1 a[12] = 0 b ; set mr1 a[5,1] = 01 b ; r tt _nom enable: set mr1 a[9,6,2] = 011 b ; r tt _w r enable: set mr2 a[10,9] = 10 b . 3. pecharge power down mode: set mr0 a12=0 b for slow exit or mr0 a12=1 b for fast exit. 4. auto self - refresh (asr): set mr2 a6 = 0 b to disable or 1 b to enable feature. 5. self - refresh temperature range (srt): set mr2 a7=0 b for normal or 1 b for extended temperature range. 6. read burst type: nibble sequential, set mr0 a[3] = 0 b.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 126 - table 40 C i dd0 measurement - loop pattern 1 ck, ck# cke sub - loop cycle number command cs# ras# cas# we# odt ba[2:0] a[ 13:11 ] a[10] a[9:7] a[ 6 : 3 ] a[2:0] data 2 toggling static high 0 0 act 0 0 1 1 0 0 0 0 0 0 0 - 1, 2 d, d 1 0 0 0 0 0 0 0 0 0 0 - 3, 4 d#, d# 1 1 1 1 0 0 0 0 0 0 0 - ... repeat pattern 1...4 until nras - 1, truncate if necessary nras pre 0 0 1 0 0 0 0 0 0 0 0 - ... repeat pattern 1...4 until nrc - 1, truncate if necessary 1*nrc+0 act 0 0 1 1 0 0 0 0 0 f 0 - 1*nrc+1, 2 d, d 1 0 0 0 0 0 0 0 0 f 0 - 1*nrc+ 3 , 4 d#, d# 1 1 1 1 0 0 0 0 0 f 0 - ... repeat pattern nrc + 1,...,4 until nrc + nras - 1, truncate if necessary 1*nrc+nras pre 0 0 1 0 0 0 0 0 0 f 0 - ... repeat pattern nrc + 1,...,4 until 2*nrc - 1, truncate if necessary 1 2*nrc repeat sub - loop 0, use ba[2:0] = 1 instead 2 4 *nrc repeat sub - loop 0, use ba[2:0] = 2 instead 3 6 *nrc repeat sub - loop 0, use ba[2:0] = 3 instead 4 8 *nrc repeat sub - loop 0, use ba[2:0] = 4 instead 5 10 *nrc repeat sub - loop 0, use ba[2:0] = 5 instead 6 12 *nrc repeat sub - loop 0, use ba[2:0] = 6 instead 7 14 *nrc repeat sub - loop 0, use ba[2:0] = 7 instead note s : 1. dm must be driven low all the time. dqs, dqs# are mid - level . 2. dq signals are mid - level .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 127 - table 4 1 C i dd 1 measurement - loop pattern 1 ck, ck# cke sub - loop cycle number command cs# ras# cas# we# odt ba[2:0] a[ 13:11 ] a[10] a[9:7] a[ 6 : 3 ] a[2:0] data 2 toggling static high 0 0 act 0 0 1 1 0 0 0 0 0 0 0 - 1, 2 d, d 1 0 0 0 0 0 0 0 0 0 0 - 3, 4 d#, d# 1 1 1 1 0 0 0 0 0 0 0 - ... repeat pattern 1...4 until nr cd - 1, truncate if necessary nr cd rd 0 1 0 1 0 0 0 0 0 0 0 0000000 0 ... repeat pattern 1...4 until n ras - 1, truncate if necessary nr as pre 0 0 1 0 0 0 0 0 0 0 0 - ... repeat pattern 1...4 until nrc - 1, truncate if necessary 1*nrc+0 act 0 0 1 1 0 0 0 0 0 f 0 - 1*nrc+1, 2 d, d 1 0 0 0 0 0 0 0 0 f 0 - 1*nrc+ 3 , 4 d#, d# 1 1 1 1 0 0 0 0 0 f 0 - ... repeat pattern nrc + 1,... ,4 until nrc + nr cd - 1, truncate if necessary 1*nrc+nr cd rd 0 1 0 1 0 0 0 0 0 f 0 00 11 00 11 ... repeat pattern nrc + 1,...,4 until nrc + nr as - 1, truncate if necessary 1*nrc+nras pre 0 0 1 0 0 0 0 0 0 f 0 - ... repeat pattern nrc + 1,...,4 until 2*nrc - 1, truncate if necessary 1 2*nrc repeat sub - loop 0, use ba[2:0] = 1 instead 2 4 *nrc repeat sub - loop 0, use ba[2:0] = 2 instead 3 6 *nrc repeat sub - loop 0, use ba[2:0] = 3 instead 4 8 *nrc repeat sub - loop 0, use ba[2:0] = 4 instead 5 10 *nrc repeat sub - loop 0, use ba[2:0] = 5 instead 6 12 *nrc repeat sub - loop 0, use ba[2:0] = 6 instead 7 14 *nrc repeat sub - loop 0, use ba[2:0] = 7 instead note s : 1. dm must be driven low all the time. dqs, dqs# are used according to rd commands, otherwise mid - level . 2. burst sequence driven on each dq signal by read command. outside burst operation, dq signals are mid - level .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 128 - table 4 2 C i dd 2n and i dd3n measurement - loop pattern 1 ck, ck# cke sub - loop cycle number command cs# ras# cas# we# odt ba[2:0] a[ 13:11 ] a[10] a[9:7] a[ 6 : 3 ] a[2:0] data 2 toggling static high 0 0 d 1 0 0 0 0 0 0 0 0 0 0 - 1 d 1 0 0 0 0 0 0 0 0 0 0 - 2 d# 1 1 1 1 0 0 0 0 0 f 0 - 3 d# 1 1 1 1 0 0 0 0 0 f 0 - 1 4 - 7 repeat sub - loop 0, use ba[2:0] = 1 instead 2 8 - 11 repeat sub - loop 0, use ba[2:0] = 2 instead 3 12 - 1 5 repeat sub - loop 0, use ba[2:0] = 3 instead 4 16 - 1 9 repeat sub - loop 0, use ba[2:0] = 4 instead 5 20 - 23 repeat sub - loop 0, use ba[2:0] = 5 instead 6 24 - 27 repeat sub - loop 0, use ba[2:0] = 6 instead 7 28 - 31 repeat sub - loop 0, use ba[2:0] = 7 instead note s : 1. dm must be driven low all the time. dqs, dqs# are mid - level . 2. dq signals are mid - level . table 4 3 C i dd 2nt and i dd q2 n t measurement - loop pattern 1 ck, ck# cke sub - loop cycle number command cs# ras# cas# we# odt ba[2:0] a[ 13:11 ] a[10] a[9:7] a[ 6 : 3 ] a[2:0] data 2 toggling static high 0 0 d 1 0 0 0 0 0 0 0 0 0 0 - 1 d 1 0 0 0 0 0 0 0 0 0 0 - 2 d# 1 1 1 1 0 0 0 0 0 f 0 - 3 d# 1 1 1 1 0 0 0 0 0 f 0 - 1 4 - 7 repeat sub - loop 0, but odt = 0 and ba[2:0] = 1 2 8 - 11 repeat sub - loop 0, but odt = 1 and ba[2:0] = 2 3 12 - 1 5 repeat sub - loop 0, but odt = 1 and ba[2:0] = 3 4 16 - 1 9 repeat sub - loop 0, but odt = 0 and ba[2:0] = 4 5 20 - 23 repeat sub - loop 0, but odt = 0 and ba[2:0] = 5 6 24 - 27 repeat sub - loop 0, but odt = 1 and ba[2:0] = 6 7 28 - 31 repeat sub - loop 0, but odt = 1 and ba[2:0] = 7 note s : 1. dm must be driven low all the time. dqs, dqs# are mid - level . 2. dq signals are mid - level .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 129 - table 4 4 C i dd4r and i ddq4r measurement - loop pattern 1 ck, ck# cke sub - loop cycle number command cs# ras# cas# we# odt ba[2:0] a[ 13:11 ] a[10] a[9:7] a[ 6 : 3 ] a[2:0] data 2 toggling static high 0 0 rd 0 1 0 1 0 0 0 0 0 0 0 00000000 1 d 1 0 0 0 0 0 0 0 0 0 0 - 2, 3 d#, d# 1 1 1 1 0 0 0 0 0 0 0 - 4 rd 0 1 0 1 0 0 0 0 0 f 0 00 11 00 11 5 d 1 0 0 0 0 0 0 0 0 f 0 - 6, 7 d#, d# 1 1 1 1 0 0 0 0 0 f 0 - 1 8 - 15 repeat sub - loop 0, but ba[2:0] = 1 2 16 - 23 repeat sub - loop 0, but ba[2:0] = 2 3 24 - 31 repeat sub - loop 0, but ba[2:0] = 3 4 32 - 39 repeat sub - loop 0, but ba[2:0] = 4 5 40 - 47 repeat sub - loop 0, but ba[2:0] = 5 6 48 - 55 repeat sub - loop 0, but ba[2:0] = 6 7 56 - 63 repeat sub - loop 0, but ba[2:0] = 7 note s : 1. dm must be driven low all the time. dqs, dqs# are used according to rd commands, otherwise mid - level. 2. burst sequence driven on each dq signal by read command. outside burst operation, dq signals are mid - level . table 4 5 C i dd4w measurement - loop pattern 1 ck, ck# cke sub - loop cycle number command cs# ras# cas# we# odt ba[2:0] a[ 13:11 ] a[10] a[9:7] a[ 6 : 3 ] a[2:0] data 2 toggling static high 0 0 wr 0 1 0 0 1 0 0 0 0 0 0 00000000 1 d 1 0 0 0 1 0 0 0 0 0 0 - 2, 3 d#, d# 1 1 1 1 1 0 0 0 0 0 0 - 4 wr 0 1 0 0 1 0 0 0 0 f 0 00 11 00 11 5 d 1 0 0 0 1 0 0 0 0 f 0 - 6, 7 d#, d# 1 1 1 1 1 0 0 0 0 f 0 - 1 8 - 15 repeat sub - loop 0, but ba[2:0] = 1 2 16 - 23 repeat sub - loop 0, but ba[2:0] = 2 3 24 - 31 repeat sub - loop 0, but ba[2:0] = 3 4 32 - 39 repeat sub - loop 0, but ba[2:0] = 4 5 40 - 47 repeat sub - loop 0, but ba[2:0] = 5 6 48 - 55 repeat sub - loop 0, but ba[2:0] = 6 7 56 - 63 repeat sub - loop 0, but ba[2:0] = 7 note s : 1. dm must be driven low all the time. dqs, dqs# are used according to wr commands, otherwise mid - level. 2. burst sequence driven on each dq signal by write command. outside burst operation, dq signals are mid - level .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 130 - table 4 6 C i dd 5b measurement - loop pattern 1 ck, ck# cke sub - loop cycle number command cs# ras# cas# we# odt ba[2:0] a[ 13:11 ] a[10] a[9:7] a[ 6 : 3 ] a[2:0] data 2 toggling static high 0 0 ref 0 0 0 1 0 0 0 0 0 0 0 - 1 1, 2 d, d 1 0 0 0 0 0 0 0 0 0 0 - 3, 4 d#, d# 1 1 1 1 0 0 0 0 0 f 0 - 5 ... 8 repeat cycles 1...4, but ba[2:0] = 1 9 ... 1 2 repeat cycles 1...4, but ba[2:0] = 2 13 ... 16 repeat cycles 1...4, but ba[2:0] = 3 17 ... 20 repeat cycles 1...4, but ba[2:0] = 4 2 1 ... 24 repeat cycles 1...4, but ba[2:0] = 5 2 5 ... 28 repeat cycles 1...4, but ba[2:0] = 6 29...32 repeat cycles 1...4, but ba[2:0] = 7 2 33...nrfc - 1 repeat sub - loop 1, until nrfc - 1 . truncate, if necessary note s : 1. dm must be driven low all the time. dqs, dqs# are mid - level . 2. dq signals are mid - level .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 131 - table 4 7 C i dd 7 measurement - loop pattern 1 attention: sub - loops 10 - 19 have inverse a[6:3] pattern and data pattern than sub - loops 0 - 9 ck, ck# cke sub - loop cycle number command cs# ras# cas# we# odt ba[2:0] a[ 13:11 ] a[10] a[9:7] a[ 6 : 3 ] a[2:0] data 2 toggling static high 0 0 act 0 0 1 1 0 0 0 0 0 0 0 - 1 rda 0 1 0 1 0 0 0 1 0 0 0 0000000 0 2 d 1 0 0 0 0 0 0 0 0 0 0 - ... repeat above d command until nrrd - 1 1 nr rd act 0 0 1 1 0 1 0 0 0 f 0 - nrrd+ 1 rda 0 1 0 1 0 1 0 1 0 f 0 00 11 00 11 nrrd+ 2 d 1 0 0 0 0 1 0 0 0 f 0 - ... repeat above d command until 2 * nrrd - 1 2 2 *nrrd repeat sub - loop 0, but ba[2:0] = 2 3 3 *nrrd repeat sub - loop 1 , but ba[2:0] = 3 4 4 *nrrd d 1 0 0 0 0 3 0 0 0 f 0 - assert and repeat above d command until nfaw - 1, if necessary 5 nfaw repeat sub - loop 0, but ba[2:0] = 4 6 nfaw+nrrd repeat sub - loop 1 , but ba[2:0] = 5 7 nfaw+ 2 *nrrd repeat sub - loop 0, but ba[2:0] = 6 8 nfaw+3*nrrd repeat sub - loop 1 , but ba[2:0] = 7 9 nfaw+ 4 *nrrd d 1 0 0 0 0 7 0 0 0 f 0 - assert and repeat above d command until 2 * nfaw - 1, if necessary 10 2*nfaw+ 0 act 0 0 1 1 0 0 0 0 0 f 0 - 2*nfaw+ 1 rda 0 1 0 1 0 0 0 1 0 f 0 00 11 00 11 2*nfaw+ 2 d 1 0 0 0 0 0 0 0 0 f 0 - repeat above d command until 2 * nfaw + nrrd - 1 11 2*nfaw+nrrd act 0 0 1 1 0 1 0 0 0 0 0 - 2*nfaw+nrrd+ 1 rda 0 1 0 1 0 1 0 1 0 0 0 0000000 0 2*nfaw+nrrd+ 2 d 1 0 0 0 0 1 0 0 0 0 0 - repeat above d command until 2 * nfaw + 2 * nrrd - 1 12 2*nfaw+ 2 *nrrd repeat sub - loop 1 0, but ba[2:0] = 2 13 2*nfaw+ 3 *nrrd repeat sub - loop 11 , but ba[2:0] = 3 14 2*nfaw+ 4 *nrrd d 1 0 0 0 0 3 0 0 0 0 0 - assert and repeat above d command until 3 * nfaw - 1, if necessary 15 3 *nfaw repeat sub - loop 1 0, but ba[2:0] = 4 16 3 *nfaw+nrrd repeat sub - loop 11 , but ba[2:0] = 5 17 3 *nfaw+ 2 *nrrd repeat sub - loop 1 0, but ba[2:0] = 6 18 3 *nfaw+ 3 *nrrd repeat sub - loop 11 , but ba[2:0] = 7 19 3 *nfaw+ 4 *nrrd d 1 0 0 0 0 7 0 0 0 0 0 - assert and repeat above d command until 4 * nfaw - 1, if necessary note s : 1. dm must be driven low all the time. dqs, dqs# are used according to rd commands, otherwise mid - level . 2. burst sequence driven on each dq signal by read command. outside burst operation, dq signals are mid - leve l .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 132 - 10.13.2 i dd current specifications speed bin ddr3 - 1 333 ddr3 - 1 600 ddr3 - 1 866 sym. part number exten s ion - 15/15i - 12/12i - 1 1 unit definition m ax . m ax . m ax . i dd0 operating one bank active - precharge current 10 0 1 0 5 1 15 ma i dd1 operating one bank active - read - precharge current 1 25 1 30 1 40 ma i dd2 n precharge standby current 6 5 7 0 8 0 ma i dd2n t precharge standby odt current 10 0 105 1 1 0 ma i dd 2 p 0 precharge power down current slow exit 1 9 1 9 1 9 ma i dd 2p1 precharge power down current fast exit 48 5 0 5 5 ma i dd 2q precharge quiet standby current 65 7 0 75 ma i dd 3n active standby current 7 0 7 5 80 ma i dd 3p active power down current 5 5 60 6 5 ma i dd 4r operating burst read current 2 35 2 5 0 28 0 ma i dd 4w operating burst write current 20 0 220 2 5 0 ma i dd 5b burst refresh current 1 45 1 5 0 1 5 5 ma i dd 6 self - refresh current, t oper = 0 - 85c 1 9 1 9 1 9 ma i dd 6et self - refresh current, t oper = 0 - 95c 21 21 21 ma i dd 7 operating bank interleave read current 3 7 0 38 0 4 0 0 ma i dd 8 reset# low current 1 9 1 9 1 9 ma note s : 1. max. value s for i dd currents consider worst case conditions of process, temperature and voltage . 2. the i dd values must be derated (increased) when operated outside the range 0 c t case 85 c : (a) when t case < 0c: i dd2p0 , i dd2p1 and i dd3p must be derated by 4%; i dd4r and i dd5w must be derated by 2%; and i dd6 , i dd6et and i dd7 must be derated by 7%. (b) when t case > 85c: i dd0 , i dd1 , i dd2n , i dd2nt , i dd2q , i dd3n , i dd3p , i dd4r , i dd4w , and i dd5b must be derated by 2%; and i dd2p 0 , i dd2p 1 must be derated by 30%.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 133 - 10.14 clock specification the jitter specified is a random jitter meeting a gaussian distribution. input clocks violating the min/max values may result in malfunction of the ddr3 sdram device . definition for tck(avg) t ck(avg) is calcul ated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge . t ck ( avg ) = / n where n = 200 definition for tck(a bs ) t ck(abs) is defined as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. t ck(abs) is not subject to production test . definition for tch(avg) and tcl(avg) t ch(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses . t ch ( avg ) = / ( n t ck ( avg )) where n = 200 t c l (avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses . t cl ( avg ) = / ( n t ck ( avg )) where n = 200 definition for tjit(per) and tjit(per,lck) t jit(per) is defined as the largest deviation of any signal t ck from t ck(avg) . t jit(per) = min/max of {t ck i - t ck(avg) where i = 1 to 200}. t jit(per) defines the single period jitter when the dll is already locked. t jit(per,lck) uses the same definition for single period jitter, during the dll locking period only. t jit(per) and t ji t (per,lck) are not subject to production test . ? ? ? ? ? ? ? ? n j j tck 1 ? ? ? ? ? ? ? ? n j j tch 1 ? ? ? ? ? ? ? ? n j j tcl 1
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 134 - definition for tjit(cc) and tjit(cc,lck) t jit(cc) is defined as the absolute difference in clock period between two consecutive clock cycles. t jit(cc) = max of |{t ck i +1 - t ck i}|. t jit(cc) defines the cycle to cycle jitter when the dll is already locked. t jit(cc,lck) uses the same definition for cycle to cycle jitter, during the dll locking period only. t jit(cc) and t jit (cc,lck) are not subject to production test . definition for terr(nper) t err is defined as the cumulative error across n multiple consecutive cycles from t ck(avg) . t err is not subject to production test. 10.15 speed bins ddr3 sdram speed bins include t ck , t rcd , t rp , t rc and t r as for each corresponding bin. 10.15.1 ddr3 - 1 333 speed bin and operating conditions speed bin ddr3 - 1 333 unit notes cl - nrcd - nrp 9 - 9 - 9 part number exten s ion - 15/15i parameter symbol m in . m ax . maximum operating frequency using maximum allowed settings for sup_cl and sup_cwl f ckmax ? 667 mhz internal read command to first data t aa 13. 5 (13.125) * 9 20 ns act to internal read or write delay time t rcd 13. 5 (13.125) * 9 ? ns pre command period t rp 13. 5 (13.125) * 9 ? ns act to act or ref command period t rc 49 . 5 ( 49 .125) * 9 ? ns act to pre command period t ras 36 9 * t refi ns cl = 6 cwl = 5 t ck(avg) 2.5 3.3 ns 1, 2, 3, 4, 6 cwl = 6 , 7 t ck(avg) reserved ns 5 cl = 7 cwl = 5 t ck(avg) reserved ns 5 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 4, 6 (optional) * 9 ns cwl = 7 t ck(avg) reserved ns 5 cl = 8 cwl = 5 t ck(avg) reserved ns 5 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 4, 6 cwl = 7 t ck(avg) reserved ns 5 cl = 9 cwl = 5 , 6 t ck(avg) reserved ns 5 cwl = 7 t ck(avg) 1.5 < 1.875 ns 1, 2, 3, 4, 6 cl = 10 cwl = 5 , 6 t ck(avg) reserved ns 5 cwl = 7 t ck(avg) 1.5 < 1.875 ns 1, 2, 3, 4, 6 supported cl settings sup_cl 6, (7) , 8, 9 , 10 nck supported c w l settings sup_cwl 5, 6 , 7 nck n ote: field value contents in blue font or parentheses are optional ac parameter and cl setting . detail descriptions refer to note 9.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 135 - 10.15.2 ddr3 - 1 600 speed bin and operating conditions speed bin ddr3 - 1 600 unit notes cl - nrcd - nrp 11 - 11 - 11 part number exten s ion - 12/12i parameter symbol m in . m ax . maximum operating frequency using maximum allowed settings for sup_cl and sup_cwl f ckmax ? 800 mhz internal read command to first data t aa 13. 7 5 (13.125) * 9 20 ns act to internal read or write delay time t rcd 13. 7 5 (13.125) * 9 ? ns pre command period t rp 13. 7 5 (13.125) * 9 ? ns act to act or ref command period t rc 48 . 7 5 ( 48 .125) * 9 ? ns act to pre command period t ras 35 9 * t refi ns cl = 6 cwl = 5 t ck(avg) 2.5 3.3 ns 1, 2, 3, 4, 7 cwl = 6 , 7, 8 t ck(avg) reserved ns 5 cl = 7 cwl = 5 t ck(avg) reserved ns 5 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 4, 7 (optional) * 9 ns 5 cwl = 7, 8 t ck(avg) reserved ns 5 cl = 8 cwl = 5 t ck(avg) reserved ns 5 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 4, 7 cwl = 7 , 8 t ck(avg) reserved ns 5 cl = 9 cwl = 5 , 6 t ck(avg) reserved ns 5 cwl = 7 t ck(avg) 1.5 < 1.875 ns 5 (optional) * 9 ns 1, 2, 3, 4, 7 cwl = 8 t ck(avg) reserved ns 5 cl =10 cwl = 5 , 6 t ck(avg) reserved ns 5 cwl = 7 t ck(avg) 1.5 < 1.875 ns 1, 2, 3, 4, 7 cwl = 8 t ck(avg) reserved ns 5 cl =11 cwl = 5 , 6, 7 t ck(avg) reserved ns 5 cwl = 8 t ck(avg) 1. 2 5 < 1.5 ns 1, 2, 3, 4, 7 supported cl settings sup_cl 6, ( 7 ) , 8, ( 9 ) , 10 , 11 nck supported c w l settings sup_cwl 5, 6 , 7, 8 nck n ote: field value contents in blue font or parentheses are optional ac parameter and cl setting . detail descriptions refer to note 9.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 136 - 10.15.3 ddr3 - 1 866 speed bin and operating conditions speed bin ddr3 - 1 866 unit notes cl - nrcd - nrp 13 - 13 - 13 part number exten s ion - 11 parameter symbol m in . m ax . maximum operating frequency using maximum allowed settings for sup_cl and sup_cwl f ckmax ? 933 mhz internal read command to first data t aa 13.91 20 ns act to internal read or write delay time t rcd 13.91 ? ns pre command period t rp 13.91 ? ns act to act or ref command period t rc 47 .91 ? ns act to pre command period t ras 34 9 * t refi ns cl = 6 cwl = 5 t ck(avg) 2.5 3.3 ns 1, 2, 3, 4, 8 cwl = 6 , 7, 8, 9 t ck(avg) reserved ns 5 cl = 8 cwl = 5 t ck(avg) reserved ns 5 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 4, 8 cwl = 7 , 8, 9 t ck(avg) reserved ns 5 cl =10 cwl = 5 , 6 t ck(avg) reserved ns 5 cwl = 7 t ck(avg) 1.5 < 1.875 ns 1, 2, 3, 4, 8 cwl = 8 , 9 t ck(avg) reserved ns 5 cl =13 cwl = 5, 6 , 7, 8 t ck(avg) reserved ns 5 cwl = 9 t ck(avg) 1. 07 < 1.25 ns 1, 2, 3, 4, 8 supported cl settings sup_cl 6, 8, 10 , 13 nck supported c w l settings sup_cwl 5, 6 , 7, 9 nck
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 137 - 10.15.4 speed bin general notes the absolute specification for all speed bins is t oper and v dd = v ddq = 1.5v 0.075 v . in addition the following general notes apply . 1. max. limits are exclusive. e.g. if t ck(avg).max value is 2.5 ns, t ck(avg) needs to be < 2.5 ns. 2. the cl setting and cwl setting result in t ck(avg).min and t ck(avg).max requirements. when making a selection of t ck(avg) , both need to be fulfilled: requirements from cl setting as well as requirements from cwl setting . 3. t ck(av g).min limits: since cas latency is not purely analog - data and strobe output are synchronized by the dll - all possible intermediate frequencies may not be guaranteed. an application should use the next smaller standard t ck(avg) value (2.5 , 1.875 , 1.5, 1.25 n s or 1. 07 n s ) when calculating cl [nck] = t aa [n s ] / t ck(avg) [n s ], rounding up to the next supported cl . 4. t ck(avg).max limits: calculate t ck(avg) = t aa.max / cl selected and round the resulting t ck(avg) down to the next valid speed bin (i.e. 3.3n s or 2.5n s or 1.875 n s or 1.25 n s ). this result is t ck(avg).max corresponding to cl selected . 5. reserved settings are not allowed. user must program a different value . 6. any ddr3 - 1 333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to production tests but verified by design/characterization . 7. any ddr3 - 1 600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to production tests but verified by design/characterization . 8. any ddr3 - 1 866 speed bin also supports functional operation at lower frequencies as s hown in the table which are not subject to production tests but verified by design/characterization . 9. for devices supporting optional down binning to cl=7 and cl=9, t aa /t rcd /t rp min must be 13.125 ns or lower. spd settings must be programmed to match. for e xample, ddr3 - 1333 (9 - 9 - 9) devices supporting down binning to ddr3 - 1066 (7 - 7 - 7) should program 13.125 ns in spd bytes for t aa min (byte 16), t rcd min (byte 18), and t rp min (byte 20). ddr3 - 1600 (11 - 11 - 11) devices supporting down binning to ddr3 - 1333 (9 - 9 - 9) or ddr3 - 1066 (7 - 7 - 7) should program 13.125 ns in spd bytes for t aa min (byte16), t rcd min (byte 18), and t rp min (byte 20). once t rp (byte 20) is programmed to 13.125 ns, t rc min (byte 21, 23) also should be programmed accodingly. for example, 49.125n s (t ras min + t rp min = 36 n s + 13.125 n s ) for ddr3 - 1333 (9 - 9 - 9) and 48.125 ns (t ras min + t rp min = 35 ns + 13.125 ns) for ddr3 - 1600 (11 - 11 - 11).
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 138 - 10.16 ac characteristics 10.16.1 ac timing and o perating c ondition for - 11 speed grade s ym bol speed grade ddr3 - 1866 ( - 11) u nit s n otes p arameter m in . m ax . c ommon notes 1, 2, 3, 4 clock input timing t c k ( dll - off ) minimum clock cycle time (dll - off mode) 8 ? ns 45 t c k ( avg ) average clock period see speed bin on page 13 6 ps t ch ( avg ) average ck / ck# high pulse width 0.47 0.53 t ck (avg) t cl ( avg ) average ck / ck# low pulse width 0.47 0.53 t ck (avg) t c k ( a bs ) absolute clock period min.: t ck (avg)min + t jit (per)min max.: t ck (avg)max + t jit (per)max ps 37 t ch ( a bs ) absolute ck / ck# high pulse width 0.43 ? t ck (avg) 38 t cl ( a bs ) absolute ck / ck# low pulse width 0.43 ? t ck (avg) 39 t jit ( per ) clock period jitter - 60 60 ps t jit ( per,lck ) clock period jitter during dll locking period - 50 50 ps t jit ( cc ) cycle to cycle period jitter 120 ps t jit ( cc,lck ) cycle to cycle period jitter during dll locking period 100 ps t jit ( duty ) clock duty cycle jitter already included in t ch (abs) and t cl (abs) ps t err ( 2per ) cumulative error across 2 cycles - 88 88 ps t err ( 3 per ) cumulative error across 3 cycles - 105 105 ps t err ( 4 per ) cumulative error across 4 cycles - 117 117 ps t err ( 5 per ) cumulative error across 5 cycles - 126 126 ps t err ( 6 per ) cumulative error across 6 cycles - 133 133 ps t err ( 7 per ) cumulative error across 7 cycles - 139 139 ps t err ( 8 per ) cumulative error across 8 cycles - 145 145 ps t err ( 9 per ) cumulative error across 9 cycles - 150 150 ps t err ( 10 per ) cumulative error across 10 cycles - 154 154 ps t err ( 11 per ) cumulative error across 11 cycles - 158 158 ps t err ( 12 per ) cumulative error across 12 cycles - 161 161 ps t err ( n per ) cumul ative error across n = 13, 14... 49, 50 cycles min.: t jit (per)min * (1 + 0.68 * ln(n)) max.: t jit (per)max * (1 + 0.68 * ln(n)) ps 7
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 139 - ac timing and o perating c ondition for - 11 speed grade , continued s ym bol speed grade ddr3 - 1866 ( - 11) u nit s n otes p arameter m in . m ax . data timing t dqsq dqs, dqs# to dq skew, per group, per access ? qh dq output hold time from dqs, dqs# 0.3 8 ? ck (avg) 1 8 , 23 t lz(dq) dq low impedance time from ck, ck# - 39 0 195 ps 17, 23, 24 t h z(dq) dq high impedance time from ck, ck# ? d s ( ac135 ) data setup time to dqs, dqs# base specification @ 2 v/ns 68 ps 11 , 40 v ref @ 2 v/ns 135 .5 ps 11 , 40, 42 t dh ( dc100 ) data hold time from dqs, dqs# base specification @ 2 v/ns 7 0 ps 11 , 40 v ref @ 2 v/ns 120 ps 11 , 40, 42 t dipw dq and dm input pulse width for each input 320 ? data strobe timing t rpre dqs,dqs# differential read preamble 0.9 note 21 t ck (avg) 18, 21, 23 t rpst dqs, dqs# differential read postamble 0.3 note 22 t ck (avg) 18, 22, 23 t qsh dqs,dqs# differential output high time 0.4 ? ck (avg) 18, 23 t qsl dqs,dqs# differential output low time 0.4 ? ck (avg) 18, 23 t wpre dqs,dqs# differential write preamble 0.9 ? ck (avg) 46 t wpst dqs,dqs# differential write postamble 0.3 ? ck (avg) 46 t dqsck dqs,dqs# rising edge out put access time from rising ck, ck# - 195 195 p s 17, 23 t lz(dqs) dqs and dqs# low - impedance time from ck, ck# (referenced from rl - 1) - 390 195 p s 17, 23, 24 t h z(dqs) dqs and dqs# high - impedance time from ck, ck# (referenced from rl + bl/2) ? dqsl dqs, dqs# differential input low pulse width 0.45 0.55 t ck (avg) 12, 14 t dqs h dqs,dqs# differential input high pulse width 0.45 0.55 t ck (avg) 13, 14 t dqss dqs,dqs# rising edge to ck,ck# rising edge - 0.27 0.27 t ck (avg) 16 t dss dqs,dqs# falling edge setup time to ck,ck# rising edge 0.18 ? ck (avg) 15, 16 t ds h dqs,dqs# falling edge hold time from ck,ck# rising edge 0.18 ? ck (avg) 15, 16 command and address timing t aa internal read command to first data see speed bin on page 13 r cd act to internal read or write delay time n s 8 t rp pre command period n s 8 t rc act to act or ref command period n s 8 t ras act to pre command period n s 8
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 140 - ac timing and o perating c ondition for - 1 1 speed grade , continued s ym bol speed grade ddr3 - 1866 ( - 11) u nit s n otes p arameter m in . m ax . command and address timing t dllk dll locking time 512 ? rtp internal read command to precharge command delay max(4nck, 7.5ns) ? wtr delay from start of internal write transaction to internal read command max(4nck, 7.5ns) ? wr write recovery time 15 ? mrd mode register set command cycle time 4 ? m o d mode register set command update delay max(12nck, 15ns) ? ccd cas# to cas# command delay 4 ? dal (min) auto precharge write recovery + precharge time wr + roundup(t rp (min) / t ck (avg) ) nck 6 t mprr multi - purpose register recovery time 1 ? rrd active to active command period for 2 kb page size max(4nck, 6 ns) ? faw four activate window for 2 kb page size 3 5 ? is(ac135) command and address setup time to ck, ck# base specification 65 ps 9 , 41 v ref @ 1 v/ns 200 ps 9 , 41, 42 t is (ac125) command and address setup time to ck, ck# base specification 150 ps 9 , 41 v ref @ 1 v/ns 275 ps 9 , 41, 42 t i h (dc100) command and address hold time from ck, ck# base specification 100 ps 9 , 41 v ref @ 1 v/ns 200 ps 9 , 41, 42 t ipw control and address i nput pulse width for each input 535 ? calibration timing t zq init power - up and reset calibration time max(512nck, 640ns) ? zq oper normal operation full calibration time max( 256 nck, 320 ns) ? zqcs normal operation short calibration time max( 64 nck, 8 0ns) ? reset timing t xpr exit reset from cke high to a valid command max(5nck, 1 7 0 ns) ? self refresh timing t xs exit self refresh to commands not requiring a locked dll max(5nck, 1 7 0 ns) ? xsdll exit self refresh to commands requiring a locked dll t dllk (min) ? ckesr minimum cke low width for self refresh entry to exit timing t cke (min) + 1 nck ? cksre valid clock requirement after self refresh entry (sre) max(5 nck, 10 ns) ? cksrx valid clock requirement before self refresh exit (srx) max(5 nck, 10 ns) ? refresh timing t rfc ref command to act or ref command time 1 6 0 ? refi average periodic refresh interval 0 c cas e ? cas e ?
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 141 - ac timing and o perating c ondition for - 1 1 speed grade , continued s ym bol speed grade ddr3 - 1866 ( - 11) u nit s n otes p arameter m in . m ax . power down timing t xp exit power down with dll on to any valid command; exit precharge power down with dll frozen to commands not requiring a locked dll max( 3 nck, 6 ns) ? xpdll exit precharge power down with dll frozen to commands requiring a locked dll max( 10 nck, 24 ns) ? cke cke minimum pulse width max( 3 nck, 5 ns) ? cpded command pass disable delay 2 ? pd power down entry to exit timing t cke (min) 9 * t refi 25 t actpden timing of act command to power down entry 1 ? prpden timing of pre or prea command to power down entry 1 ? rdpden timing of rd/rda command to power down entry rl + 4 + 1 ? wrpden timing of wr command to power down entry (bl8otf, bl8mrs, bc4otf) min.: wl + 4 + roundup (t wr (min)/ t ck (avg)) max.: ? wrapden timing of wra command to power down entry (bl8otf, bl8mrs, bc4otf) min.: wl + 4 + wr + 1 max.: ? wrpden timing of wr command to power down entry (bc4mrs) min.: wl + 2 + roundup (t wr (min)/ t ck (avg)) max.: ? wrapden timing of wra command to power down entry (bc4mrs) min.: wl + 2 + wr + 1 max.: ? refpden timing of ref command to power down entry 1 ? mrspden timing of mrs command to power down entry t mod (min) ? odt timing odth4 odt high time without write command or with write command and burst chop 4 4 ? ? aonpd asynchronous r tt turn - on delay (power down with dll frozen) 2 8.5 n s 32 t aofpd asynchronous r tt turn - o ff delay (power down with dll frozen) 2 8.5 ns 32 t aon r tt turn - on - 195 195 ps 17, 43 t aof r tt _nom and r tt _wr turn - off time from odtloff reference 0.3 0.7 t ck (avg) 17, 44 t adc r tt dynamic change skew 0.3 0.7 t ck (avg) 17 write leveling timing t wlmrd first dqs/dqs# rising edge after write leveling mode is programmed 40 ? wldqsen dqs/dqs# delay after write leveling mode is programmed 25 ? wls write leveling setup time from ( ck, ck# ) zero crossing to rising ( dqs, dqs# ) zero crossing 140 ? wlh write leveling hold time from rising ( dqs, dqs# ) zero crossing to ( ck, ck# ) zero crossing 140 ? wlo write leveling output delay 0 7.5 ns t wloe write leveling output error 0 2 n s
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 142 - 10.16.2 ac timing and o perating c ondition for - 12/12i / - 15/15i speed grades s ym bol speed grade ddr3 - 1600 ( - 12/12i ) ddr3 - 1333 ( - 15/15i ) u nit s n otes p arameter m in . m ax . m in . m ax . c ommon notes 1, 2, 3, 4 clock input timing t c k ( dll - off ) minimum clock cycle time (dll - off mode) 8 ? 8 ? ns 45 t c k ( avg ) average clock period see speed bin on page 13 5 see speed bin on page 1 3 4 ps t ch ( avg ) average ck / ck# high pulse width 0.47 0.53 0.47 0.53 t ck (avg) t cl ( avg ) average ck / ck# low pulse width 0.47 0.53 0.47 0.53 t ck (avg) t c k ( a bs ) absolute clock period min.: t ck (avg)min + t jit (per)min max.: t ck (avg)max + t jit (per)max ps 37 t ch ( a bs ) absolute ck / ck# high pulse width 0.43 ? 0.43 ? t ck (avg) 38 t cl ( a bs ) absolute ck / ck# low pulse width 0.43 ? 0.43 ? t ck (avg) 39 t jit ( per ) clock period jitter - 70 70 - 80 80 ps t jit ( per,lck ) clock period jitter during dll locking period - 60 60 - 70 70 ps t jit ( cc ) cycle to cycle period jitter 14 0 16 0 ps t jit ( cc,lck ) cycle to cycle period jitter during dll locking period 12 0 14 0 ps t jit ( duty ) clock duty cycle jitter already included in t ch (abs) and t cl (abs) ps t err ( 2per ) cumulative error across 2 cycles - 103 103 - 118 1 18 ps t err ( 3 per ) cumulative error across 3 cycles - 122 1 22 - 140 1 40 ps t err ( 4 per ) cumulative error across 4 cycles - 136 1 36 - 155 1 55 ps t err ( 5 per ) cumulative error across 5 cycles - 147 1 47 - 168 1 68 ps t err ( 6 per ) cumulative error across 6 cycles - 155 1 55 - 177 1 77 ps t err ( 7 per ) cumulative error across 7 cycles - 163 163 - 186 1 86 ps t err ( 8 per ) cumulative error across 8 cycles - 169 1 69 - 193 1 93 ps t err ( 9 per ) cumulative error across 9 cycles - 175 1 75 - 200 200 ps t err ( 10 per ) cumulative error across 10 cycles - 180 1 80 - 205 205 ps t err ( 11 per ) cumulative error across 11 cycles - 184 1 84 - 210 210 ps t err ( 12 per ) cumulative error across 12 cycles - 188 1 88 - 215 215 ps t err ( n per ) cumul ative error across n = 13, 14... 49, 50 cycles min.: t jit (per)min * (1 + 0.68 * ln(n)) max.: t jit (per)max * (1 + 0.68 * ln(n)) ps 7
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 143 - ac timing and o perating c ondition for - 12/12i / - 15/15i speed grades, continued s ym bol speed grade ddr3 - 1600 ( - 12/12i ) ddr3 - 1333 ( - 15/15i ) u nit s n otes p arameter m in . m ax . m in . m ax . data timing t dqsq dqs, dqs# to dq skew, per group, per access ? ? qh dq output hold time from dqs, dqs# 0.3 8 ? ? ck (avg) 18, 23 t lz(dq) dq low impedance time from ck, ck# - 450 2 25 - 500 250 ps 17, 23, 24 t h z(dq) dq high impedance time from ck, ck# ? ? ds( ac150 ) data setup time to dqs, dqs# base specification 10 30 ps 11 , 40 v ref @ 1 v/ns 160 180 11 , 40, 42 t dh ( dc100 ) data hold time from dqs, dqs# base specification 45 65 ps 11 , 40 v ref @ 1 v/ns 145 165 11 , 40, 42 t dipw dq and dm i nput pulse width for each input 36 0 ? ? data strobe timing t rpre dqs,dqs# differential read preamble 0.9 note 21 0.9 note 21 t ck (avg) 18, 21, 23 t rpst dqs, dqs# differential read postamble 0.3 note 22 0.3 note 22 t ck (avg) 18, 22, 23 t qsh dqs,dqs# differential output high time 0. 4 ? ? ck (avg) 18, 23 t qsl dqs,dqs# differential output low time 0. 4 ? ? ck (avg) 18, 23 t wpre dqs,dqs# differential write preamble 0.9 ? ? ck (avg) 46 t wpst dqs,dqs# differential write postamble 0.3 ? ? ck (avg) 46 t dqsck dqs,dqs# rising edge out put access time from rising ck, ck# - 225 225 - 255 255 p s 17, 23 t lz(dqs) dqs and dqs# low - impedance time from ck, ck# (referenced from rl - 1) - 450 2 25 - 500 250 p s 17, 23, 24 t h z(dqs) dqs and dqs# high - impedance time from ck, ck# (referenced from rl + bl/2) ? ? dqsl dqs, dqs# differential input low pulse width 0.4 5 0. 55 0.4 5 0. 55 t ck (avg) 12, 14 t dqs h dqs,dqs# differential input high pulse width 0.4 5 0. 55 0.4 5 0. 55 t ck (avg) 13, 14 t dqss dqs,dqs# rising edge to ck,ck# rising edge - 0.2 7 0.2 7 - 0.25 0.25 t ck (avg) 16 t dss dqs,dqs# falling edge setup time to ck,ck# rising edge 0. 18 ? ? ck (avg) 15, 16 t ds h dqs,dqs# falling edge hold time from ck,ck# rising edge 0. 18 ? ? ck (avg) 15, 16 command and address timing t aa internal read command to first data see speed bin on see speed bin on r cd act to internal read or write delay time n s 8 t rp pre command period n s 8 t rc act to act or ref command period n s 8 t ras act to pre command perio d n s 8 t dllk dll locking time 512 ? ? rtp internal read command to precharge command delay max(4nck, 7.5ns) ? ? wtr delay from start of internal write transaction to internal read command max(4nck, 7.5ns) ? ?
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 144 - ac timing and o perating c ondition for - 12/12i / - 15/15i speed grades, continued s ym bol speed grade ddr3 - 1600 ( - 12/12i ) ddr3 - 1333 ( - 15/15i ) u nit s n otes p arameter m in . m ax . m in . m ax . command and address timing t wr write recovery time 15 ? ? mrd mode register set command cycle time 4 ? ? m o d mode register set command update delay max(12nck, 15ns) ? ? ccd cas# to cas# command delay 4 ? ? dal (min) auto precharge write recovery + precharge time wr + roundup(t rp (min) / t ck (avg) ) nck 6 t mprr multi - purpose register recovery time 1 ? ? rrd active to active command period for 2 kb page size max(4nck, 7.5 ns) ? ? faw four activate window for 2 kb page size 4 0 ? ? is (ac175) command and address setup time to ck, ck# base specification 45 65 ps 9 , 41 v ref @ 1 v/ns 220 240 ps 9 , 41, 42 t is( ac150 ) command and address setup time to ck, ck# base specification 170 190 ps 9 , 41 v ref @ 1 v/ns 320 340 ps 9 , 41, 42 t i h ( d c1 0 0 ) command and address hold time from ck, ck# base specification 120 140 ps 9 , 41 v ref @ 1 v/ns 220 240 ps 9 , 41, 42 t ipw control , a ddress and control i nput pulse width for each input 560 ? ? calibration timing t zq init power - up and reset calibration time max(512nck, 640ns) ? ? zq oper normal operation full calibration time max( 256 nck, 320 ns) ? ? zqcs normal operation short calibration time max( 64 nck, 8 0ns) ? ? reset timing t xpr exit reset from cke high to a valid command max(5nck, 1 7 0 ns) ? ? self refresh timing t xs exit self refresh to commands not requiring a locked dll max(5nck, 1 7 0 ns) ? ? xsdll exit self refresh to commands requiring a locked dll t dllk (min) ? dllk (min) ? ckesr minimum cke low width for self refresh entry to exit timing t cke (min) + 1 nck ? cke (min) + 1 nck ? cksre valid clock requirement after self refresh entry (sre) max(5 nck, 10 ns) ? ? cksrx valid clock requirement before self refresh exit (srx) max(5 nck, 10 ns) ? ? refresh timing t rfc ref command to act or ref command time 1 6 0 ? ? refi average periodic refresh interval - 4 0 c cas e ? ? cas e ? ? cas e ? ? t cas e 85 c is for 12i and 15i grade only .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 145 - ac timing and o perating c ondition for - 12/12i / - 15/15i speed grades, continued s ym bol speed grade ddr3 - 1600 ( - 12/12i ) ddr3 - 1333 ( - 15/15i ) u nit s n otes p arameter m in . m ax . m in . m ax . power down timing t xp exit power down with dll on to any valid command; exit precharge power down with dll frozen to commands not requiring a locked dll max( 3 nck, 6 ns) ? ? xpdll exit precharge power down with dll frozen to commands requiring a locked dll max( 10 nck, 24 ns) ? ? cke cke minimum pulse width max( 3 nck, 5 ns) ? ? cpded command pass disable delay 1 ? ? pd power down entry to exit timing t cke (min) 9 * t refi t cke (min) 9 * t refi 25 t actpden timing of act command to power down entry 1 ? ? prpden timing of pre or prea command to power down entry 1 ? ? rdpden timing of rd/rda command to power down entry rl + 4 + 1 ? ? wrpden timing of wr command to power down entry (bl8otf, bl8mrs, bc4otf) min.: wl + 4 + roundup (t wr (min)/ t ck (avg)) max.: ? wrapden timing of wra command to power down entry (bl8otf, bl8mrs, bc4otf) min.: wl + 4 + wr + 1 max.: ? wrpden timing of wr command to power down entry (bc4mrs) min.: wl + 2 + roundup (t wr (min)/ t ck (avg)) max.: ? wrapden timing of wra command to power down entry (bc4mrs) min.: wl + 2 + wr + 1 max.: ? refpden timing of ref command to power down entry 1 ? ? mrspden timing of mrs command to power down entry t mod (min) ? mod (min) ? odt timing odth4 odt high time without write command or with write command and burst chop 4 4 ? ? ? ? aonpd asynchronous r tt turn - on delay (power down with dll frozen) 2 8.5 2 8.5 n s 32 t aofpd asynchronous r tt turn - o ff delay (power down with dll frozen) 2 8.5 2 8.5 ns 32 t aon r tt turn - on - 225 225 - 250 250 ps 17, 43 t aof r tt _nom and r tt _wr turn - off time from odtloff reference 0.3 0.7 0.3 0.7 t ck (avg) 17, 44 t adc r tt dynamic change skew 0.3 0.7 0.3 0.7 t ck (avg) 17 write leveling timing t wlmrd first dqs/dqs# rising edge after write leveling mode is programmed 40 ? ? wldqsen dqs/dqs# delay after write leveling mode is programmed 25 ? ? wls write leveling setup time from ( ck, ck# ) zero crossing to rising ( dqs, dqs# ) zero crossing 165 ? ? wlh write leveling hold time from rising ( dqs, dqs# ) zero crossing to ( ck, ck# ) zero crossing 165 ? ? wlo write leveling output delay 0 7.5 0 9 ns t wloe write leveling output error 0 2 0 2 n s
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 146 - 10.16.3 timing parameter notes 1. unit t ck( avg) represents the actual t ck (avg) of the input clock under operation. unit nck represents one clock cycle of the input clock, c ounting the actual clock edges. for example, t mrd = 4 [nck] means; if one mode register set command is registered at tm, another mode register set command may be registered at tm+4, even if (tm+4 - tm) is 4 x t ck (avg) + t err (4per),min (which is smaller than 4 x t ck (avg)). 2. timing that is not specified is illegal and after such an event, in order to provide proper operation, the dram must be resetted or powered down and then restarted through the specified initialization sequence before normal operation can continue . 3. the ck/ck# input reference level (for ti ming reference to ck / ck#) is the point at which ck and ck # cross . the dqs/dqs# input reference level is the point at which dqs and dqs# cross; the input reference level for signals other than ck/ck#, dqs/dqs# and reset# is v refca and v refdq respectively. 4. inputs are not recognized as valid until v refca stabilizes within specified limits. 5. the max values are system dependent. 6. t ck (avg) refers to the actual application clock period. wr refers to the wr parameter stored in mode register mr0. 7. n = from 13 cycles to 50 cycles. this row defines 38 parameters . 8. for these parameters, the ddr3 sdram device supports t nparam [nck] = ru{ t param [ns] / t ck (avg) [n s ] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. for example, the device will support tn rp = ru{t rp / t ck (avg)}, which is in clock cycles, if all input clock jitter specifications are met. this means: for ddr3 - 1 333 ( 9 - 9 - 9 ), of which t rp = 1 3. 5 ns, the device will support tn rp = ru{t rp / t ck (avg)} = 9 , as long as the input clock jitter specifications are met, i.e. precharge command at tm and active command at tm+ 9 is valid even if (tm+ 9 - tm) is less than 1 3. 5 ns due to input clock jitter. 9. these parameters are measured from a command/address signal (cke, cs#, ras#, cas#, we# , odt, ba0, a0, a1, etc.) transition edge to its respective clock signal (ck/ck#) crossing. the spec values are not affected by the amount of clock jitter applied (i.e. t jit (per), t jit (cc), etc.), as the setup and hold are relative to the clock signal cros sing that latches the command/address. that is, these parameters should be met whether clock jitter is present or not . 10. pulse width of a input signal is defined as the width between the first crossing of v ref ( dc ) and the consecutive crossing of v ref ( dc ) . 11. these parameters are measured from a data signal (dm(l/u), dq(l/u)0, dq(l/u)1, etc.) transition edge to its respective data strobe signal (dqs(l/u), dqs(l/u)#) crossing . 12. t dqsl describes the instantaneous differential input low pulse width on dqs - dqs#, as measured from one falling edge to the next consecutive rising edge. 13. t dqsh describes the instantaneous differential input high pulse width on dqs - dqs#, as measured from one rising edge to the next consecutive falling edge . 14. t dqsh ,act + t dqsl ,act = 1 t ck ,a ct ; with t xyz ,act being the actual measured value of the respective timing parameter in the application. 15. t dsh ,act + t dss ,act = 1 t ck ,act ; with t xyz ,act being the actual measured value of the respective timing parameter in the application. 16. these parameter s are measured from a data strobe signal (dqs(l/u), dqs(l/u)#) crossing to its respective clock signal (ck, ck#) crossing. the spec values are not affected by the amount of clock jitter applied (i.e. t jit (per), t jit (cc), etc.), as these are relative to the clock signal crossing. that is, these parameters should be met whether clock jitter is present or not.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 147 - 17. when the device is operated with input clock jitter, this parameter needs to be derated by the actual t err (mper),act of the input clock, where 2 m 12. ( o utput deratings are relative to the actual sdram input clock.) for example, if the measured jitter into a ddr3 - 1333 sdram has t err (mper),act,min = - 1 38 ps and t err (mper),act,max = + 1 55 ps, then t dqsck, min(derated) = t dqsck ,min - t err (mper),act,ma x = - 25 5 ps - 1 55 ps = - 410 ps and t dqsck ,max(derated) = t dqsck ,max - t err (mper),act,mi n = 255 ps + 1 38 ps = + 393 ps. similarly, t lz(dq) for ddr3 - 1 333 derates to t lz(dq) ,min(derated) = - 50 0 ps - 1 55 ps = - 655 ps and t lz(dq ),max(derated) = 25 0 ps + 1 38 ps = + 388 ps. (caution on the min/max usage!) note that t err (mper),act,min is the minimum measured value of t err (nper) where 2 n 12, and t err (mper),act,max is the maximum measured value of t err (nper) where 2 n 12 . 18. when the device is operated with input clock jitter, this parameter needs to be derated by the actual t jit (per),act of the input clock. (output deratings are relative to the sdram input clock.) for example, if the measured jitter into a ddr3 - 1 333 sdram has t ck (avg),act = 1 500 ps, t jit (pe r),act,min = - 58 ps and t jit (per),act,max = + 7 4 ps, then t rpre ,min(derated) = t rpre ,min + t jit (per),act,min = 0.9 x t ck (avg),act + t jit (per),act,min = 0.9 x 1 500 ps - 58 ps = + 1 292 ps. similarly, t qh ,min(derated) = t qh ,min + t jit (per),act,min = 0.3 8 x t ck (avg),act + t jit (per),act,min = 0.3 8 x 1 500 ps - 58 ps = + 512 ps. (caution on the min/max usage!) . 19. wr in clock cycles as programmed in mode register mr0 . 20. t wr (min) is defined in n s , for calculation of t wrpden it is necessary to round up t wr (min)/ t ck (avg) to the next integer value . 21. the maximum read preamble is bound by t lz(dqs ) min on the left side and t dqsck (max) on the right side . see figure 24 - read timing; clock to data strobe relationshi p on page 4 5 . 22. the maximum read postamble is bound by t dqsck (min) plus t qsh (min) on the left side and t hz (dqs) max on the right side . see figure 24 - read timing; clock to data strobe relationshi p on page 4 5 . 23. value is only valid for ron34. 24. single ended signal parameter. 25. t refi depends on t oper . 26. start of internal write transaction is defined as follows: for bl8 (fixed by mrs and on - the - fly): rising clock edge 4 clock cycles after wl. for bc4 (on - the - fly): rising clock edge 4 clock cycles after wl. for bc4 (fixed by mrs): rising clock edge 2 clock cycles after wl . 27. cke is allowed to be registered low while o perations such as row activation, precharge, auto - precharge or refresh are in progress, but power down i dd spec will not be applied until finishing those operations . 28. although cke is allowed to be registered low after a refresh command once t refpden (min) is satisfied, there are cases where additional time such as t xpdll (min) is also required . see section 8 .17.3 power - down clarifications - case 2 on pag e 7 5 . 29. defined between end of mpr read burst and mrs which reloads mpr or disables mpr function . 30. odth4 is measured from odt first registered high (without a write command) to odt first registered low, or from odt registered high together with a write command with burst length 4 to odt registered low. 31. odth8 is measured from odt registered high together with a write command with burst length 8 to odt registered low. 32. this parameter applies upon entry and during precharge power down mode with dll frozen.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 148 - 33. one zqcs command can effectively correct a minimum of 0.5 % (zq correction) of ron and r tt impedance error within 64 nck for all speed bins assuming the maximum sensitivities specified in the output driver voltage and temperature sensitivity and odt vo ltage and temperature sensitivity tables. the appropriate interval between zqcs commands can be determined from these tables and other application - specific parameters . one method for calculating the interval between zqcs commands, given the temperature (t driftrate) and voltage (vdriftrate) drift rates that the sdram is subject to in the application, is illustrated. the interval could be defined by the following formula: where tsens = max(drttdt, drondtm) and vsens = max(drttdv, drond vm) define the sdram temperature and voltage sensitivities. for example, if tsens = 1.5% / ? c , vsens = 0.15% / mv, tdriftrate = 1 ? c / sec and vdriftrate = 15 mv/ sec, then the interval between zqcs commands is calculated as: = 0.133 128ms 34. commands not requiring a locked dll are all commands except read, read with auto - precharge and synchronous odt. 35. commands requiring a locked dll are read, read with auto - precharge and synchronous odt. 36. a maximum of one regular plus eight posted refres h commands can be issued to any given ddr3 sdram device meaning that the maximum absolute interval between any refresh command and the next refresh command is 9 t refi . 37. parameter t ck (avg) is specified per its average value. however, it is understood that t he relationship between the average timing t ck (avg) and the respective absolute instantaneous timing t ck (abs) holds all times. 38. t ch (abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge. 39. t cl (abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge. 40. t ds (base) and t dh (base) values are for a single - ended 1v/ns slew rate dqs (dqs are at 2v/n s for ddr3 - 1866 ) and 2v/ns dqs, dqs# differential slew rate. note for dq and dm signals, v ref(dc) = v refdq(dc) . for input only pins except reset#, v ref(dc) = v refca(dc) . see section 10 .16. 5 data setup, hold and slew rate derating on page 15 6 . 41. t is (base) and t ih (base) values are for 1v/ns cmd/add single - ended slew rate and 2v/ns ck, ck# differential slew rate. note for dq and dm signals, v ref(dc) = v refdq(dc) . for input only pins except reset#, v ref(dc) = v refca(dc) . see section 10 .16. 4 address / command setup, hold and derating on page 1 4 9 . 42. the setup and hold times are listed conve rting the base specification values (to which derating tables apply) to v ref when the slew rate is 1 v/n s (dqs are at 2v/n s for ddr3 - 1866) . these values, with a slew rate of 1 v/n s (dqs are at 2v/n s for ddr3 - 1866) , are for reference only . 43. for definition of rtt turn - on time t aon see 8 .19.2.2 timing parameters on page 80 . 44. for definition of rtt turn - off time t aof see 8 .19.2.2 timing parameters on page 80 . 45. there is no maximum cycle time limit besides the need to satisfy the refresh interval, t refi . 46. actual value dependant upon measurement level definitions see figure 4 1 - method for calculating t wpre transitions and endpoints on page 5 8 and see figu re 4 2 - method for calculating t wpst transitions and endpoints on page 5 8 . ) vdriftrate (vsens + ) tdriftrate (tsens on zqcorrecti 15) (0.15 + 1) (1.5 0.5
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 149 - 10.16.4 address / command setup, hold and derating for all input signals the total t is (setup time) and t ih (hold time) required i s calculated by adding the data sheet t is(base) and t ih(base) value (see table 4 8 ) to the t is and t ih derating value ( see table 4 9 to table 52 ) respectively. example: t is (total setup time) = t is(base) + t is setup (t is ) nominal slew rate for a rising signal is defined as the slew ra te between the last crossing of v ref(dc) and the first crossing of v ih(ac) min. setup (t is ) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of v ref(dc) and the first crossing of v il(ac) max. if the actual signal is always earlier than the nominal slew rate line between shaded v ref(dc) to ac region, use nominal slew rate for derating value (see figure 10 7 ). if the actual signal is la ter than the nominal slew rate line anywhere between shaded v ref(dc) to ac region, the slew rate of a tangent line to the actual signal from the ac level to v ref(dc) level is used for derating value (see figure 10 9 ). hold (t ih ) nominal slew rate for a rising signal is defined as the slew ra te between the last crossing of v il(dc) max and the first crossing of v ref(dc) . hold (t ih ) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of v ih(dc) min and the first crossi ng of v ref(dc) . if the actual signal is always later than the nominal slew rate line between shaded dc to v ref(dc) region, use nominal slew rate for derating value (see figure 10 8 ). if the actual signal is earlier than the nominal slew rate line anywhere between shaded dc to v ref(dc) region, the slew rate of a tangent line to the actual signal from the dc level to v ref(dc) level is used for derating value (see figure 1 10 ). for a valid transition the input signal has to remain above/below v ih/il(ac) for some time t vac (see table 5 3 ). although for slow slew rates the total setup time might be negative (i.e. a v alid input signal will not have reached v ih/il(ac) at the time of the rising clock transition, a valid input signal is still required to complete th e transition and reach v ih/il(ac) . for slew rates in between the values listed in the t able s , the derating values may obtained by linear interpolation. these values are typically not subject to production test. they are verified by design and characterizat ion . table 4 8 C add/cmd setup and hold base - values for 1v/ns symbol reference ddr3 - 1 333 ddr3 - 1 600 ddr3 - 1 866 unit t is(base) ac175 v ih/l(ac) 65 45 - ps t is(base) ac150 v ih/l(ac) 190 170 - ps t i s (base) ac1 35 v ih/l( a c) - - 65 ps t i s (base) ac1 25 v ih/l( a c) - - 150 ps t i h (base) dc100 v ih/l(dc) 140 120 100 ps note s : 1. (ac/dc referenced for 1v/ns address/command slew rate and 2 v/ns differential ck - ck# slew rate) 2. the t is(base) ac150 specifications are adjusted from the t is(base) ac1 75 specification by adding an additional 100ps for ddr3 - 1333/1600 of derating to accommodate for the lower alternate threshold of 150 mv and another 25 ps to account for the earlier reference point [(175 mv - 150 mv) / 1 v/ns] . 3. the t is(base) ac1 25 specificat ions are adjusted from the t is(base) ac1 35 specification by adding an additional 75 ps for ddr3 - 1 866 of derating to accommodate for the lower alternate threshold of 1 25 mv and another 10 ps to account for the earlier reference point [(1 3 5 mv - 1 25 mv) / 1 v/ns].
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 150 - table 49 C derating values ddr3 - 1333/1600 t is /t ih - ac/dc based ac1 75 threshold cmd/ add slew rate (v/ns) t i s, t ih derating in [ps] ac/dc based ac175 threshold - > vih(ac)=vref(dc)+175mv, vil(ac)=vref(dc) - 175mv ck, ck# differential slew rate 4 .0 v/ns 3 .0 v/ns 2.0 v/ns 1.8 v/ns 1.6 v/ns 1.4 v/ns 1.2 v/ns 1 .0 v/ns t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih 2.0 88 50 88 50 88 50 96 58 104 66 112 74 120 84 128 100 1.5 59 34 59 34 59 34 67 42 75 50 83 58 91 68 99 84 1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0.9 - 2 - 4 - 2 - 4 - 2 - 4 6 4 14 12 22 20 30 30 38 46 0.8 - 6 - 10 - 6 - 10 - 6 - 10 2 - 2 10 6 18 14 26 24 34 40 0.7 - 11 - 16 - 11 - 16 - 11 - 16 - 3 - 8 5 0 13 8 21 18 29 34 0.6 - 17 - 26 - 17 - 26 - 17 - 26 - 9 - 18 - 1 - 10 7 - 2 15 8 23 24 0.5 - 35 - 40 - 35 - 40 - 35 - 40 - 27 - 32 - 19 - 24 - 11 - 16 - 2 - 6 5 10 0.4 - 6 2 - 60 - 6 2 - 60 - 6 2 - 60 - 54 - 52 - 46 - 44 - 38 - 36 - 30 - 26 - 22 - 10 table 50 C derating values ddr3 - 1333/1600 t is /t ih - ac/dc based - alternate ac150 threshold cmd/ add slew rate (v/ns) t i s, t ih derating in [ps] ac/dc based alternate ac150 threshold - > vih(ac)=vref(dc)+150mv, vil(ac)=vref(dc) - 150mv ck, ck# differential slew rate 4 .0 v/ns 3 .0 v/ns 2.0 v/ns 1.8 v/ns 1.6 v/ns 1.4 v/ns 1.2 v/ns 1 .0 v/ns t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih 2.0 75 50 75 50 75 50 83 58 91 66 99 74 107 84 115 100 1.5 50 34 50 34 50 34 58 42 66 50 74 58 82 68 90 84 1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0.9 0 - 4 0 - 4 0 - 4 8 4 16 12 24 20 32 30 40 46 0.8 0 - 10 0 - 10 0 - 10 8 - 2 16 6 24 14 32 24 40 40 0.7 0 - 16 0 - 16 0 - 16 8 - 8 16 0 24 8 32 18 40 34 0.6 - 1 - 26 - 1 - 26 - 1 - 26 7 - 18 15 - 10 23 - 2 31 8 39 24 0.5 - 10 - 40 - 10 - 40 - 10 - 40 - 2 - 32 6 - 24 14 - 16 22 - 6 30 10 0.4 - 25 - 60 - 25 - 60 - 25 - 60 - 17 - 52 - 9 - 44 - 1 - 36 7 - 26 15 - 10
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 151 - table 51 C derating values ddr3 - 1 866 t is /t ih - ac/dc based alternate ac1 35 threshold cmd/ add slew rate (v/ns) t i s, t ih derating in [ps] ac/dc based alternate ac1 3 5 threshold - > vih(ac)=vref(dc)+1 35 mv, vil(ac)=vref(dc) - 1 35 mv ck, ck# differential slew rate 4 .0 v/ns 3 .0 v/ns 2.0 v/ns 1.8 v/ns 1.6 v/ns 1.4 v/ns 1.2 v/ns 1 .0 v/ns t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih 2.0 68 50 68 50 68 50 76 58 84 66 92 74 100 84 108 100 1.5 45 34 45 34 45 34 53 42 61 50 69 58 77 68 85 84 1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0.9 2 - 4 2 - 4 2 - 4 10 4 18 12 26 20 34 30 42 46 0.8 3 - 10 3 - 10 3 - 10 11 - 2 19 6 27 14 35 24 43 40 0.7 6 - 16 6 - 16 6 - 16 14 - 8 22 0 30 8 38 18 46 34 0.6 9 - 26 9 - 26 9 - 26 17 - 18 25 - 10 33 - 2 41 8 49 24 0.5 5 - 40 5 - 40 5 - 40 13 - 32 21 - 24 29 - 16 37 - 6 45 10 0.4 - 3 - 60 - 3 - 60 - 3 - 60 6 - 52 14 - 44 22 - 36 30 - 26 38 - 10 table 5 2 C derating values ddr3 - 1 866 t is /t ih - ac/dc based alternate ac1 25 threshold cmd/ add slew rate (v/ns) t i s, t ih derating in [ps] ac/dc based alternate ac1 2 5 threshold - > vih(ac)=vref(dc)+1 2 5mv, vil(ac)=vref(dc) - 1 2 5mv ck, ck# differential slew rate 4 .0 v/ns 3 .0 v/ns 2.0 v/ns 1.8 v/ns 1.6 v/ns 1.4 v/ns 1.2 v/ns 1 .0 v/ns t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih t i s t ih 2.0 63 50 63 50 63 50 71 58 79 66 87 74 95 84 10 3 100 1.5 42 34 42 34 42 34 50 42 58 50 66 58 74 68 8 2 84 1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0.9 4 - 4 4 - 4 4 - 4 12 4 20 12 28 20 36 30 4 4 46 0.8 6 - 10 6 - 10 6 - 10 14 - 2 22 6 30 14 38 24 4 6 40 0.7 11 - 16 11 - 16 11 - 16 19 - 8 27 0 35 8 43 18 51 34 0.6 16 - 26 16 - 26 16 - 26 24 - 18 32 - 10 40 - 2 48 8 56 24 0.5 15 - 40 15 - 40 15 - 40 23 - 32 31 - 24 39 - 16 47 - 6 5 5 10 0.4 13 - 60 13 - 60 13 - 60 21 - 52 29 - 44 37 - 36 45 - 26 53 - 10 table 5 3 C required time t vac above v ih(ac) {below v il(ac) } for valid add/cmd transition slew rate [v/ns] ddr3 - 1333/1600 ddr3 - 1866 t vac @ 175mv [ps] t vac @ 1 50 mv [ps] t vac @ 1 35 mv [ps] t vac @ 1 25 mv [ps] m in . m ax . m in . m ax . m in . m ax . m in . m ax . > 2.0 75 - 175 - 168 - 173 - 2.0 57 - 170 - 168 - 173 - 1.5 50 - 167 - 145 - 152 - 1 .0 38 - 1 30 - 100 - 110 - 0.9 34 - 1 13 - 85 - 96 - 0.8 29 - 93 - 66 - 79 - 0.7 22 - 66 - 42 - 56 - 0.6 note - 30 - 10 - 27 - 0.5 note - note - note - note - < 0.5 note - note note - note - note: rising input signal shall become equal to or greater than v ih( ac ) level and falling input signal shall become equal to or less than v il( ac ) level.
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 152 - figure 10 7 C illustration of nominal slew rate and t vac for setup time t ds (for dq with respect to strobe) and t is (for add/cmd with respect to clock) c k c k # d q s # d q s v d d q v i h ( a c ) m i n v i h ( d c ) m i n v r e f ( d c ) v i l ( d c ) m a x v i l ( a c ) m a x v s s t i s t i h t i s t i h t v a c n o m i n a l s l e w r a t e v r e f t o a c r e g i o n n o m i n a l s l e w r a t e v r e f t o a c r e g i o n t v a c t f t r s e t u p s l e w r a t e f a l l i n g s i g n a l = v r e f ( d c ) C v i l ( a c ) m a x t f s e t u p s l e w r a t e r i s i n g s i g n a l = v i h ( a c ) m i n - v r e f ( d c ) t r t d s t d h t d s t d h n o t e : c l o c k a n d s t r o b e a r e d r a w n o n a d i f f e r e n t t i m e s c a l e .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 153 - figure 10 8 C illustration of nominal slew rate for hold time t dh (for dq with respect to strobe) and t ih (for add/cmd with respect to clock) v d d q v i h ( a c ) m i n v i h ( d c ) m i n v r e f ( d c ) v i l ( d c ) m a x v i l ( a c ) m a x v s s t i s t i h t i s t i h n o m i n a l s l e w r a t e d c t o v r e f r e g i o n n o m i n a l s l e w r a t e d c t o v r e f r e g i o n t f t r t d s t d h t d s t d h n o t e : c l o c k a n d s t r o b e a r e d r a w n o n a d i f f e r e n t t i m e s c a l e . h o l d s l e w r a t e r i s i n g s i g n a l = v r e f ( d c ) C v i l ( d c ) m a x t r h o l d s l e w r a t e f a l l i n g s i g n a l = v i h ( d c ) m i n - v r e f ( d c ) t f c k c k # d q s # d q s
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 154 - figure 10 9 C illustration of tangent line for setup time t ds (for dq with respect to strobe) and t is (for add/cmd with respect to clock) v d d q v i h ( a c ) m i n v i h ( d c ) m i n v r e f ( d c ) v i l ( d c ) m a x v i l ( a c ) m a x v s s t f t r v r e f t o a c r e g i o n v r e f t o a c r e g i o n t a n g e n t l i n e t a n g e n t l i n e n o m i n a l l i n e n o m i n a l l i n e t v a c t v a c s e t u p s l e w r a t e r i s i n g s i g n a l = t a n g e n t l i n e [ v i h ( a c ) m i n - v r e f ( d c ) ] t r s e t u p s l e w r a t e f a l l i n g s i g n a l = t a n g e n t l i n e [ v r e f ( d c ) - v i l ( a c ) m a x ] t f t i s t i h t i s t i h t d s t d h t d s t d h n o t e : c l o c k a n d s t r o b e a r e d r a w n o n a d i f f e r e n t t i m e s c a l e . c k c k # d q s # d q s
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 155 - figure 1 10 C illustration of tangent line for for hold time t dh (for dq with respect to strobe) and t ih (for add/cmd with respect to clock) v i h ( a c ) m i n v i h ( d c ) m i n v r e f ( d c ) v i l ( d c ) m a x v i l ( a c ) m a x v s s t f t r d c t o v r e f r e g i o n t a n g e n t l i n e n o m i n a l l i n e h o l d s l e w r a t e r i s i n g s i g n a l = t a n g e n t l i n e [ v r e f ( d c ) - v i l ( d c ) m a x ] t r d c t o v r e f r e g i o n t a n g e n t l i n e n o m i n a l l i n e h o l d s l e w r a t e f a l l i n g s i g n a l = t a n g e n t l i n e [ v i h ( d c ) m i n - v r e f ( d c ) ] t f t i s t i h t i s t i h t d s t d h t d s t d h n o t e : c l o c k a n d s t r o b e a r e d r a w n o n a d i f f e r e n t t i m e s c a l e . c k c k # d q s # d q s v d d q
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 156 - 10.16.5 data setup, hold and slew rate derating for a ll input signals the total t ds (setup time) and t dh (hold time) requi red is calculated by adding the data sheet t ds(base) and t dh(base) value (see table 5 4 ) to t he t ds and t dh (see table 55 and table 56 ) derating value respectively. example: t ds (total setup time) = t ds(base) + t ds . setup (t ds ) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of v ref(dc) and the first crossing of v ih(ac) min. setup (t ds ) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of v ref(dc) and the first crossing of v il(ac) max (see figure 10 7 ). if the actual signal is always earlier than the nominal slew rate line between shaded v ref(dc) to ac region, use nominal slew rate for derating value. if the actual signal is later than the nominal slew rate line anywhere between shaded v ref(dc) to ac region, the slew rate of a tangent lin e to the actual signal from the ac level to v ref(dc) level is used for derating value (see figure 1 0 9 ). hold (t dh ) nominal slew rate for a rising signal is defined as the slew ra te between the last crossing of v il(dc) max and the first crossing of v ref(dc) . hold (t dh ) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of v ih(dc) min and the first crossing of v ref(dc) (see figure 10 8 ). if the actual signal is always later than the nominal slew rate line betwe en shaded dc level to v ref(dc) region, use nominal slew rate for derating value. if the actual signal is ear lier tha n the nominal slew rate line anywhere between shaded dc to v ref(dc) region, the slew rate of a ta ngent line to the actual signal from the dc level to v ref(dc) level is used for derating value (see figure 1 10 ). for a valid transition the input signal has to remain above/below v ih/il(ac) for some time t vac (see table 5 7 ). although for slow slew rates the total setup time might be negative (i.e. a v alid input signal will not have reached v ih/il(ac) at the time of the rising clock transition) a valid input si gna l is still required to complete the transition and reach v ih/il(ac) . for slew rates in between the values listed in the tables the derating values may obtained by linear interpolation. these values are typically not subject to production test. they are verified by design and characterization . table 5 4 C data setup and hold base - values symbol reference ddr3 - 1 333 ddr3 - 1 600 ddr3 - 1 866 unit notes t d s(base) ac1 50 v ih/l(ac) sr =1v/ns 30 10 - ps 2 t d s(base) ac1 35 v ih/l(ac) sr =2v/ns - - 68 ps 1 t d h(base) dc100 v ih/l( d c) sr =1v/ns 65 45 - ps 2 t d h(base) dc100 v ih/l( d c) sr =2v/ns - - 70 ps 1 note s : 1. ( ac/dc referenced for 2 v/ns dq - slew rate and 4 v/ns dqs slew rate) . 2. ( ac/dc referenced for 1v/ns dq - slew rate and 2 v/ns dqs slew rate) .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 157 - table 5 5 C derating values for ddr3 - 1333/1600 t ds /t dh - (ac1 50 ) dq slew rate (v/ns) t ds , t dh derating in [ps] ac/dc based * dqs, dqs# differential slew rate 4 .0 v/ns 3 .0 v/ns 2.0 v/ns 1.8 v/ns 1.6 v/ns 1.4 v/ns 1.2 v/ns 1 .0 v/ns t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh 2.0 75 50 75 50 75 50 - - - - - - - - - - 1.5 50 34 50 34 50 34 58 42 - - - - - - - - 1.0 0 0 0 0 0 0 8 8 16 16 - - - - - - 0.9 - - 0 - 4 0 - 4 8 4 16 12 24 20 - - - - 0.8 - - - - 0 - 10 8 - 2 16 6 24 14 32 24 - - 0.7 - - - - - - 8 - 8 16 0 24 8 32 18 40 34 0.6 - - - - - - - - 15 - 10 23 - 2 31 8 39 24 0.5 - - - - - - - - - - 14 - 16 22 - 6 30 10 0.4 - - - - - - - - - - - - 7 - 26 15 - 10 note: cell contents - are defined as not supported . table 5 6 C derating values for ddr3 - 1 866 t ds /t dh - (ac1 3 5 ) dq slew rate (v/ns) t ds , t dh derating in [ps] ac/dc based * alternate ac1 3 5 threshold - > vih(ac)=vref(dc)+1 35 mv, vil(ac)=vref(dc) - 1 35 mv alternate d c1 00 threshold - > vih( d c)=vref(dc)+1 00 mv, vil( d c)=vref(dc) - 1 00 mv dqs, dqs# differential slew rate 8.0 v/ns 7.0 v/ns 6.0 v/ns 5 . 0 v/ns 4.0 v/ns 3 . 0 v/ns 2.0 v/ns 1.8 v/ns 1 . 6 v/ns 1.4 v/ns 1.2 v/ns 1 .0 v/ns t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh t ds t dh 4.0 34 25 34 25 34 25 - - - - - - - - - - - - - - - - - - 3.5 29 21 29 21 29 21 29 21 - - - - - - - - - - - - - - - - 3.0 23 17 23 17 23 17 23 17 23 17 - - - - - - - - - - - - - - 2.5 - - 14 10 14 10 14 10 14 10 14 10 - - - - - - - - - - - - 2.0 - - - - 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - 1.5 - - - - - - - 23 - 17 - 23 - 17 - 23 - 17 - 23 - 17 - 15 - 9 - - - - - - - - 1.0 - - - - - - - - - 68 - 50 - 68 - 50 - 68 - 50 - 6 0 - 42 - 52 - 34 - - - - - - 0.9 - - - - - - - - - - - 6 6 - 54 - 6 6 - 54 - 58 - 46 - 50 - 38 - 42 - 30 - - - - 0.8 - - - - - - - - - - - - - 6 4 - 60 - 56 - 52 - 48 - 44 - 40 - 36 - 32 - 26 - - 0.7 - - - - - - - - - - - - - - - 53 - 59 - 45 - 51 - 37 - 43 - 29 - 33 - 21 - 17 0.6 - - - - - - - - - - - - - - - - - 43 - 61 - 35 - 53 - 27 - 43 - 19 - 27 0.5 - - - - - - - - - - - - - - - - - - - 39 - 66 - 31 - 56 - 23 - 40 0.4 - - - - - - - - - - - - - - - - - - - - - 38 - 76 - 30 - 6 0 note: cell contents - are defined as not supported . table 5 7 C required time t vac above v ih(ac) {below v il(ac) } for valid dq transition slew rate [v/ns] ddr3 - 1333/1600 (ac1 50 ) ddr3 - 1866 (ac1 35 ) t vac [ps] t vac [ps] m in . m ax . m in . m ax . > 2.0 10 5 - 93 - 2.0 105 - 93 - 1.5 8 0 - 70 - 1 .0 3 0 - 25 - 0.9 13 - note - 0.8 note - note - 0.7 note - - - 0.6 note - - - 0.5 note - - - < 0.5 note - - - note: rising input signal shall become equal to or greater than v ih( ac ) level and falling input signal shall become equal to or less than v il( ac ) level .
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 158 - 11. package specificatio n package outline w bga 96 ( 9 x13 mm 2 , ball pitch: 0.8mm, ? =0.45mm ) 1 9 6 x b a 1 a s e a t i n g p l a n e s y m b o l d i m e n s i o n ( m m ) m i n . n o m . m a x . a a 1 b d e d 1 e 1 e e e d a a a b b b c c c d d d - - - - - - - - - - - - - - - - - - 0 . 1 5 0 . 1 0 0 . 2 0 - - - - - - 0 . 1 5 0 . 8 0 b s c . 0 . 8 0 b s c . 6 . 4 0 b s c . 1 2 . 0 0 b s c . 1 . 2 0 0 . 4 0 0 . 5 0 1 3 . 1 0 9 . 1 0 9 . 0 0 1 3 . 0 0 8 . 9 0 1 2 . 9 0 0 . 4 0 0 . 2 5 d e e e 1 e d d 1 2 3 7 8 9 e - - - - - - - - - - - - a b c d e f g h j k l m n p r c c c c c a c a a a b c b b b / / p i n a 1 i n d e x p i n a 1 i n d e x e e e - - - - - - 0 . 0 8 s o l d e r b a l l d i a m e t e r r e f e r s . t o p o s t r e f l o w c o n d i t i o n . t h e w i n d o w - s i d e e n c a p s u l a n t t e e e c a c b m d d d m 4 x b a l l l a n d b a l l o p e n i n g n o t e : 1 . b a l l l a n d : 0 . 5 m m , b a l l o p e n i n g : 0 . 4 m m , p c b b a l l l a n d s u g g e s t e d 0 . 4 m m 1
w632gg6kb publication release date: dec. 08, 2014 revision: a04 - 159 - 12. rev i sion history version date page description a01 feb. 18 , 2013 all initial f ormally datashee t a02 feb. 27, 2013 97 revise storage temperature up to 150c 138, 147, 155 revise - 11 speed grade ddr3 - 1866 data setup/hold time ac parameters t ds /t dh spec 139,143 revise all speed grades t x pr , t xs min. ac parameters spec 103 update a llowed time before ringback (t dvac ) for ck - ck# and dqs - dqs# spec (t able 20 ) 103 update s ingle - ended levels for ck, dqsl, dqsu, ck#, dqsl# or dqsu# spec (t able 2 1) 150 update r equired time t vac above v ih(ac) {below v il(ac) } for valid add/cmd transition spec (t able 53) 156 update derating values for ddr3 - 1866 t ds /t dh - (ac135) (table 5 6 ) 156 update r equired time t vac above v ih(ac) {below v il(ac) } for valid dq transition spec (t able 57) a03 dec. 09, 2013 11 added block diagram 7, 134, 135, 137 added cl = 7, cwl = 6 support for ddr3 - 1600 and ddr3 1333 speed bins 5~7, 98, 122, 132, 135, 142~145 added 12a and 12k automotive grade parts a0 4 dec. 08, 2014 5~7, 98, 122, 132, 134, 135, 142~145 removed 12a, 12k, 15a and 15k automotive grade parts 98 revise storage temperature 6, 98 commercial operating temperature range change from 0c t case 8 5c to 0c t case 9 5c important notice winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion con trol instruments, or for other applications intended to support or sustain life. further more, winbond products are not intended for applications wherein failure of winbond products could result or lead to a situation wherein personal injury, death or seve re property or environmental damage could occur. winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify winbond for any damages resulting from such improper use or sales.


▲Up To Search▲   

 
Price & Availability of W632GG6KB-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X